首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutral complexes (η5-C5H5NiXL (X = Cl, L = PPh3 (I); L = PCy3 (II); X = Br, L = PPh3 (III); L = PCy3 (IV); X = I, L = PPh3 (V); L = PCy3 (VI)) have been obtained by treating NiX2L2 with thallium cyclopentadienide. The same reaction in the presence of TlBF4 gives cationic derivatives [(η5-C5H5)NiL2]BF4 (L = 2PPh2Me (VII); L = dppe (VIII)), whereas mononuclear complexes containing two different ligands (L2 = PPh3 + PCy3 (IX)) or dinuclear [(η5-C5H5)Ni(PPh3)]2dppe(BF4)2 (X) are obtained from the reaction of III with TlBF4 in the presence of a different ligand. Reduction of cationic complexes with Na/Hg gives very unstable nickel(I) derivatives (η5-C5H5)NiL2, which could not be isolated purely. Similar reduction of neutral complexes under CO gives a mixture of decomposition products containing [(η5-C5H5)Ni(CO)]2 and nickel(o) carbonyls, whereas in the presence of acetylenes, dinuclear [(η5-C5H5)Ni]2(RCCR′) (R = R′ = Ph; R = Ph, R′ = H) are obtained.  相似文献   

2.
Fluorine Exchange in Trifluorophosphine Metal Complexes. IX1. (Reactions of Tetrakis(trifluorophosphine)nickel(0) with Alkyl(trimethylsilyl)amines and Amides2) Alkylaminodifluorophosphine complexes Ni(PF3)4-n(PF2NHR)n (n = 1, 2, 3) 8–11 and Me3SiF are obtained, if alkyl(trimethylsilyl)amines NHR(SiMe3) (R?CH3 and n-C4H9) are reacted with Ni(PF3)4 ( 1 ). The mechanism of these peripheric reactions is discussed by assuming a four centered type intermediate. However reactions of 1 with the lithium amides LiNR(SiMe3) (R = CH3, C2H5, n-C4H9, and C6H5) yield LiF and the difluorotrimethylsilylaminophosphine complexes Ni(PF3)4-n[PF2NR(SiMe3)]n (n = 1, 3, 4) 12–18 .  相似文献   

3.
Synthetic routes for complexes of the type π-C5H5Ni[P(OR)3]X have been developed. Nickelocene reacts with tertiary phosphites P(OR)3 in the presence of CX4 to give the complexes for which R = Me, Ph; X = Cl, and R = Ph; X = Br. π-C5H5Ni(CO)I reacts with P(OR)3 to give the complexes for which R = Me, Et, Ph. [π-C5H5Ni(P(OMe)3)2]Cl is also formed in the preparation of π-C5H5Ni[P(OMe)3]Cl from nickelocene; the corresponding [π-C5H5Ni(P(OEt)3)2]I is obtained from π-C5H5Ni[P(OEt)3]I and P(OEt)3. π-C5H5Ni[P(OMe)3]X (X = Cl, I) react with P(OMe)3 to give π-C3H5Ni[P(OMe)3] [P(O)(OMe)2] in quantitative yields, but with P(OEt)3 and P(OPh)3 π-C5H5Ni[P(OEt)3] [P(O)(OMe)2] respectively π-C5H5Ni[P(OPh)3] [P(O)-(OMe)2] are obtained as the main products. The complex (t-C4H9C5H4)Ni[P(OMe)3] [P(O) (OMe)2] can be synthesized by the same route. The course of the reactions of π-C5H5Ni[P(OR)3]X and P(OR′)3 has been investigated in some detail. Intermediate compounds {C5H5Ni[P(OR)3] [P(OR′)3]X} with a π-bonded cyclo- pentadienyl ligand have been detected at low temperatures by 1H- and 13C-NMR.-spectroscopy. They are stable up to about ?10° and react at higher temperatures smoothly to π-C5H5Ni[P(OR)3] [P(O) (OR′)3] and R′X. The structure proposed for the intermediates suggests that the mechanism of formation of the nickel phosphonate complexes is quite similar to that of the Michaelis-Arbuzov reaction.  相似文献   

4.
The hydroxo complex (Bu4N)2[Ni2(C6F5)4(μ-OH)2]reacts with 2,3,4,5,6-pentafluoro benzenamine (C6F5-NH2), 1,3-diaryltriaz-1-enes (ArNH? N=N? Ar, Ar = Ph, 4-MeC6H4, 4-MeOC6H4), 7-aza-1H-indole (= 1H-pyrrolo[2.3-b]pyridine; Hazind), N-phenylpyridin-2-amine(pyNHPh), and N-phenylpyridine-2-carboxamide (py-CONHPh) at room temperature in acetone to give the binuclear complexes (Bu4N)2[Ni2(C6F5)4(μ-C6F5NH)2] ( 1 ) and (Bu4N)2[{Ni(C6F5)2} 2(μ-OH)(μ-azind)] ( 2 ) and the mononuclear complexes Bu4N[Ni(C6F5)2(ArN3Ar)] ( 3 – 5 ), Bu4N[Ni(C6F5)2(pyNPh)] ( 6 ), and Bu4N[Ni(C6F5)2(pyCONPh)] ( 7 ). The hydroxo.complex (Bu4N)2[{Ni(C6F5)2-(μ-OH)}2] promotes the nucleophilic addition of water to pyridine-2-carbonitrile, 2-aminoacetonitrile, and 2-(dimethylamino)acetonitrile, and complexes 8 – 10 containing pyridine-2-carboxamidato, 2-aminoacetamidato and 2-(dimethylamino)acetamidato ligands are formed. Analytical (C, H, N) and spectroscopic (IR, 1H and 19F-NMR, and FAB-MS) data were used for structural assignments. A single-crystal X-ray diffraction study of (Bu4N)2[{Ni(C6F5)2}2(μ-OH)(μ-azind)] ( 2 ) established the binuclear nature of the anion; the two Ni-atoms are bridged by an OH group and a 7-aza-7H-indol-7-yl group, but the central Ni? O? Ni? N? C? N ring is not planar, the dihedral angle between the Ni? O? Ni and Ni? N? C? N? Ni planes being 84.4°.  相似文献   

5.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

6.
In the title compound, {[K2Ni(C5O5)2(H2O)2]·4H2O}n, the Ni atom lies on an inversion centre. Two inversion‐related croconate [4,5‐dihydroxy‐4‐cyclo­pentene‐1,2,3‐trionate(2−)] ligands and an NiII ion form a near‐planar symmetrical [Ni(C5O5)2]2− moiety. The near‐square coordination centre of the moiety is then extended to an octa­hedral core by vertically bonding two water mol­ecules in the [Ni(C5O5)2(H2O)2]2− coordination anion. The crystal structure is characterized by a three‐dimensional network, involving strong K⋯O⋯K binding, K⋯O—Ni binding and hydrogen bonding.  相似文献   

7.
Charge-transfer salts [Co(C5H5)2][M(dpt)2] (M = Ni and Pt; dpt = cis-1,2-diphenylethene-1,2-dithiolate) were synthesized and crystallographically characterized. [Co(C5H5)2][Ni(dpt)2] crystallizes in the monoclinic space group C2/c with a = 25, 607(3) Å, b = 9.4151(11) Å, c = 14.407(4) Å, β = 101.373(22)°, V = 3405.3(10) Å3 and Z = 4. [Co(C5H5)2][Pt(dpt)2] belongs to the triclinic space group $ {\rm P}\bar 1 $ with a = 9.4666(11) Å, b = 13.9869(12) Å, c = 14.2652(9) Å, α = 99.983(6)°, β = 90.034(7)°, γ = 109.751(7)°, V = 1747.2(3) Å3 and Z = 2. Both structures consist of ··· D+A?D+A?D+A? ··· linear chains with the local C5 axis of the eclipsed [Co(C5H5)2]+ cation parallel to the best MS4 plane of the [M(dpt)2]? anion. Magnetic susceptibility measurements show that χM T values of the complexes [Co(C5H5)2][M(dpt)2] (M = Ni, Pd, and Pt) remain nearly constant in the temperature range 15–300 K, but decrease rapidly with further decreasing of temperature, indicating weak antiferromagnetic interactions at low temperatures.  相似文献   

8.
In the title compound, [Ni(C2H3OS)2(C18H15P)2], the Ni atom lies on an inversion centre and the tri­phenyl phosphine and thio­acetate ligands are bonded to the central NiII atom in a trans fashion, with Ni—S = 2.2020 (8) and Ni—P = 2.2528 (8) Å, and angle S—Ni—P = 92.47 (3)°.  相似文献   

9.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°.  相似文献   

10.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXV. Formation and Structure of [{ cyclo ‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}] tBu2P–P=P(R)tBu2 (R = Br, Me) reacts with [Ni(CO)4] yielding [{cyclo‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}]. The two cistBu2P substituents of the cyclotriphosphane, which results from the trimerization of the phosphinophosphinidene tBu2P–P, are coordinating to a Ni(CO)2 unit forming a five‐membered P4Ni chelate ring. The transtBu2P group is linked to a Ni(CO)3 unit. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with a = 933.30(5), b = 2353.2(1) and c = 3474.7(3) pm.  相似文献   

11.
建方方  赵朴素  肖海连  张书圣 《中国化学》2002,20(10):1134-1137
IntroductionImidazolehasattractedconsiderableinterestasalig andinmanybiologicalsystemsinwhichitprovidesapo tentialbindingsiteformetalions .1Imidazoleitselfisanunidentateligandandformscomplexeswithmetalionsthroughitstertiarynitrogenatom .Somecomplexesofi…  相似文献   

12.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

13.
《Polyhedron》1995,14(23-24)
New complexes of bivalent nickel with isopropylxanthates and nitrogen-donor ligands of composition [Ni(Prixa)2(L)], [Ni(Prixa)2(L1)2], [Ni(L2)2](Prixa)2, and [Ni(L3)3] (Prixa)2 have been synthesized, where Prixa = i-C3H7OCS2, L = 1,2-diaminopropane (1,2-pn), N,N,N′,N′=tetramethylethylenediamine (tmen) or 4,4′-bipyridine (4,4′-bipy), L1 = pyridine (py), L2 = diethylenetriamine (dien) and L3 = ethylenediamine (en), 1,2-diaminopropane or 1,10-phenanthroline (phen). The compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, magnetochemical measurements, molar conductivity and thermal analysis. The compounds containing the complex cation have been one-electron irreversibly oxidized using cyclic voltammetry. The crystal and molecular structures of [Ni(Prixa)2(tmen)] and [Ni(phen)3](Prixa)2 have been elucidated.  相似文献   

14.
The imidazole covalently coordinated sandwich‐type heteropolytungstates Na9[{Na(H2O)2}3{M(C3H4N2)}3‐ (SbW9O33)2xH2O (M=NiII, x=32; M=CoII, x=32; M=ZnII, x=33; M=MnII, x=34) were obtained by the reaction of Na2WO4·2H2O, SbCl3·6H2O, NiCl2·6H2O [MnSO4·H2O, Co(NO3)2·6H2O, ZnSO4·7H2O] and imidazole at pH≈7.5. The structure of Na9[{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2]·32H2O was determined by single crystal X‐ray diffraction. Polyanion [{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2}3]9? has approximate C3v symmetry, imidazole coordinated six‐nuclear cluster [{Na(H2O)2}3{Ni(C3H4N2)}3]9+ is encapsulated between two (α‐SbW9O33)9?, the three rings of imidazole in the polyanion are perpendicular to the horizontal plane formed by six metals (Na‐Ni‐Na‐Ni‐Na‐Ni) in the central belt, and π‐stacking interactions exist between imidazoles of neighboring polyanions with dihedral angel of 60°. The compounds were also characterized by IR, UV‐Vis spectra, TG and DSC, and the thermal decomposition mechanism of the four compounds was suggested by TG curves.  相似文献   

15.
In the article “Competitive Coordination of the Uranyl ion by Perchlorate and Water – The Crystal Structures of UO2(ClO4)2·3H2O and UO2(ClO4)2·5H2O and a Redetermination of UO2(ClO4)2·7H2O” (Z. Anorg. Allg. Chem. 2003 , 629, 1012–1016), some wrong parameters and bond lengths for UO2(ClO4)2·7H2O were given in table 1 and table 3 The correct parameters are: a = 1449.5(2) pm, b = 921.6(1) pm, c = 1067.5(2) pm, V = 1422.5(4)·106 pm3, ρ = 2.712 g·cm?3, μ = 119 cm?1. The corrected bond lengths for this structure are U–O(1) 175.8(5) pm, U–O(2) 239.1(5) pm, U–O(3) 240.8(5), U–O(4) 242.0(7). A cif file with the correct data has been deposited with the ICSD.  相似文献   

16.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

17.
Complex Catalysis. XXXII. Synthesis and Characterization of η3-Allyl-, η3-Crotyl-, and η12-Cyclooct-4(Z)-en-1-yl-nickel(II)-bis(brenzcatechinato)borate and their Suitability as Catalysts for the Stereospecific Butadiene Polymerization By reaction of [(η3-C3H5)2Ni], [(η3-C4H7)2Ni], and [Ni(cycloocta-1,5-diene)2] with one equivalent bis(brenzcatechinato)boric acid HB(O2C6H4)2 in ether the complexes given in the title could be synthesized in good yields. The allyl complex [η3-C3H5NiB(O2C6H4)2] reacts with cycloocta-1,5-diene (COD) to give a cationic complex [η3-C3H5Ni(COD)]B(O2C6H4)2 and catalyses the 1,4-trans-polymerization of butadiene with an activity of ca. 150 ml C4H6/mol Ni · h and a selectivity of 78% under standard conditions at room temperature.  相似文献   

18.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

19.
The pyridine coordinated sandwich-type heteropolytungstate Na7[Ni(H2O)6] { [Na(H2O)2]3[Ni(C5H5N)]3(AsW9O33)2}·28H2O was obtained by the reaction of Na2WO4·2H2O, NaAsO2 and pyridine with NiCl2·6H2O at pH =7.0 and characterized by elemental analysis, IR, UV-Vis,^1H NMR spectra and magnetic measurement. The structure of this heteropolytungstate was determined by X-ray diffraction analysis, which crystallized in triclinic system, space group P1 with a= 1.3153(9) nm, b= 1.7228(12) nm, c=2.6866(19) nm, a=74.130(11)°,β=78.032(12)°, γ = 73.179(12)° and Z= 2, R1 = 0.0604, wR2 = 0.0915 [I〉 2σ(I)]. Polyanion {[Na(H2O)2]3[Ni(C5H5N)]3(AsW9O33)2}^9- has approximately C3 symmetry, and three pyridine coordinated Ni(C5H5N)^2+ and three Na(H2O)2^+ are encapsulated between two AsW9O33^9- . Magnetic measurements show that central Ni3 unit in the polyanion exhibits ferromagnetic Ni-Ni exchange interactions (J=6.17 cm^-1).  相似文献   

20.
The structure of hexa­aqua­nickel(II) bis­(hypophosphite), [Ni(H2O)6](H2PO2)2, has been determined. The crystals are prismatic. The packing of the Ni and P atoms (not the entire hypophosphite anions) is the same as in the structures of [Co(H2O)6](H2PO2)2 and [Co0.5Ni0.5(H2O)6](H2PO2)2. The NiII cations have a pseudo‐face‐centered cubic cell, with cell parameter a 10.216 Å and tetrahedral cavities occupied by P atoms. The NiII cation has crystallographically imposed twofold symmetry and has an octahedral coordination sphere consisting of six water O atoms, two of which also lie on the twofold axis. The planes of oppositely coordinated water mol­ecules are in a cross conformation. The geometry of the hypophosphite anion is close to point symmetry mm2. The hypophosphite anions are hydrogen bonded to the coordinated water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号