首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas phase isomerization of 1,1-dimethyl-2-vinylcyclopropane to cis-2-methylhexa-1,4-diene has been studied in a static system. The isomerization is homogeneous and kinetically first order. The rate constants were independent of initial reactant pressure in the range 0.6 to 2 torr and of added nitrogen up to 180 torr. Rate constants determined at 10 temperatures in the range 200 to 254°C fitted the Arrhenius equation k = 1011.41±0.02 exp (?33,540 ± 47 cal/RT) sec?1 The low A factor and activation energy are consistent with a concerted 1,5-hydrogen migration via a “tight” cyclic transition complex.  相似文献   

2.
The decompositions of the following poly(vinylacetate) models were investigated in the gas phase: 2-acetoxypentane (in the range 323–380°), meso and racem. 2,4-diacetoxypentane (325–375°), 4-acetoxy-1-pentene (302–375°), 4-acetoxy-2-pentene (314–381°), 5-acetoxy-2-hexene (328–391°), and 7-acetoxy-3,5-nonadiene (299–361°). The decompositions are homogeneous unimolecular first-order reactions with rate constants of 1·04 × 1013 exp(?45·/RT, 1·63 × 1013 exp(?45·4/RT), 1·01 × 1013 exp(?44·5/RT), 5sd76 × 1012 exp(?42·8/RT), 2·01 × 1013 exp(?45·5/RT), and 3·29 × 1012 exp(?41·5/RT) sec?1, respectively. The two 2,4-diacetoxypentane stereoisomers decompose at almost the same rate. From the course of decomposition of models in the gas phase, possible conclusions about decomposition of polymer are drawn. The role of configuration of sequences, double bonds, their number and geometric isomerism in the macromolecular chains are discussed in connection with elimination of acetic acid from poly(vinyl acetate).  相似文献   

3.
The kinetics of the thermally and radiation initiated chain reaction between trichloroethylene and cyclopentane to produce 1,1-dichlorovinylcyclopentane and hydrogen chloride have been investigated in the temperature range 250–360°C at high pressure in the gas phase. The rate governing step in the chain is (k3 = 3.3 × 109 exp ?(4800/RT) cc mole?1 sec ?1). The rate of the unimolecular decomposition of trichloroethylene is 1.4 × 1014 exp ?(61,200/RT) sec?1.  相似文献   

4.
Trimethylene sulfone and 3? methyl sulfolane have been pyrolyzed using a modification of the toluene flow method and a comparative rate technique. The main decomposition reactions are where k1=1016.1±0.3 exp(?28,100±500/T) sec?1 and k2=1016.1±0.4 exp(?33,200±750/T) sec?1.  相似文献   

5.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

6.
Gas-phase rate constants for the reaction of NO2 with 16 conjugated olefins were determined at room temperature by either conventional methods for bimolecular processes or by competitive reactions. It was found that the rate constants for conjugated olefins were larger than those for simple mono-olefins by factors of 103–104. Temperature dependence studies reveal that the difference in the rate constants for the two types of reactions can primarily be attributed to differences in their activation energies: k1,3-cyclohexadiene = 5.8 × 10?14 exp[?(6.1 ± 1.6)/RT] cm3 molecule?1 s?1; kcis-2-butene = 4.68 × 10?14 exp(?11.2/RT) cm3 molecule?1 s?1 [2]. A linear free energy relationship between the reactions of OH and NO2 with conjugated diolefins was observed.  相似文献   

7.
1,5-cyclooctadiene or 4-vinylcyclohexene mixture diluted with argon was heated to temperatures in the range 880–1230 K behind reflected shock waves. Profiles of IR-laser absorption were measured at 3.39 μm. From these profiles, rate constants k1 and k2 for the decyclization reactions 1,5-cyclooctadiene → biradical and 4-vinylcyclohexene → biradical were evaluated as k1 = 5.2 × 1014 exp(?48.3 kcal/RT) s?1 and k2 = 3.5 × 1014 exp(?55.3 kcal/RT) s?1, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The self-deactivation of polystyryl-barium and polystyryl-strontium in tetrahydrofuran (THF) results essentially from protonation by the solvent. The deactivation constant kd of this reaction is independent of carbanion concentration, length, and functionality of chains. Relations of kd with temperature are: polystyryl-barium: kd = 6.25 × 107 exp(-18,900/RT) sec?1; polystyryl-strontium: kd = 4.1 × 106 exp(?16,000/RT) sec?1. The self-deactivation of α,ω-dicarbanionic oligostyryl-barium is a nonrandomlike reaction. Residual living oligomers are left dicarbanionic even if an important deactivation occurs.  相似文献   

9.
The thermal decomposition of CCl3O2NO2,CCl2FO2NO2, and CClF2O2NO2 was studied in a temperature-controlled 420 l reaction chamber using in situ detection of peroxynitrates by long-path IR absorption. The temperature dependence of the unimolecular dissociation rate constants was determined at total pressures of 10 and 800 mbar in nitrogen as buffer gas, and the pressure dependence was measured at 273 K between 10 and 800 mbar. In Troe's notation, the data are represented by the following values for the limiting low and high pressure rate constants k0/[N2] and k and the fall-off curvature parameter Fc (in units of cm3 molecule?1 s?1, s?1): CCl3O2NO2,k0/[N2] = 6.3 × 10?3 exp(?85.1 kJ · mol?1/RT), k = 4.8 × 1016 exp(?98.3 kJ · mol?1/RT), Fc = 0.22; CCl2FO2NO2, k0/[N2] = 1.01× 10?2 exp(?90.3 kJ · mol?1/RT), k = 6.6 × 1016 exp(?101.8 kJ · mol?1/RT), Fc = 0.28; and CClF2O2NO2, k0/[N2] = 1.80 × 10?3 exp(?87.3 kJ · mol?1/RT), k = 1.60 × 1016exp(?99.7 kJ · mol?1/RT), Fc = 0.30. From these dissociation rate constants and recently measured rate constants for the reverse reaction (see Caralp, Lesclaux, Rayez, Rayez, and Forst [19]), bond energies (=ΔH) of 100, 103, and 104 kJ/mol were derived for the RO2–NO2 bonds in CCl3O2NO2, CCl2FO2NO2, and CClF2O2NO2, respectively. The kinetic and thermochemical parameters of these decomposition reactions are compared with those of the dissociation of other peroxynitrates. Atmospheric implications of the thermal stability of chlorofluoromethyl peroxynitrates are briefly discussed.  相似文献   

10.
Mixtures of N2O, H2, O2, and trace amounts of NO and NO2 were photolyzed at 213.9 nm, at 245°–328°K, and at about 1 atm total pressure (mostly H2). HO2 radicals are produced from the photolysis and they react as follows: Reaction (1b) is unimportant under all of our reaction conditions. Reaction (1a) was studied in competition with reaction (3) from which it was found that k1a/k31/2 = 6.4 × 10?6 exp { z?(1400 ± 500)/RT} cm3/2/sec1/2. If k3 is taken to be 3.3 × 10?12 cm3/sec independent of temperature, k1a = 1.2 × 10?11 exp {?(1400 ± 500)/RT} cm3/sec. Reaction (2a) is negligible compared to reaction (2b) under all of our reaction conditions. The ratio k2b/k1 = 0.61 ± 0.15 at 245°K. Using the Arrhenius expression for k1a given above leads to k2b = 4.2 × 10?13 cm3/sec, which is assumed to be independent of temperature. The intermediate HO2NO2 is unstable and induces the dark oxidation of NO through reaction (?2b), which was found to have a rate coefficient k?2b = 6 × 1017 exp {?26,000/RT} sec?1 based on the value of k1a given above. The intermediate can also decompose via Reaction (10b) is at least partially heterogeneous.  相似文献   

11.
The thermal decomposition of cyanogen azide (NCN3) and the subsequent collision‐induced intersystem crossing (CIISC) process of cyanonitrene (NCN) have been investigated by monitoring excited electronic state 1NCN and ground state 3NCN radicals. NCN was generated by the pyrolysis of NCN3 behind shock waves and by the photolysis of NCN3 at room temperature. Falloff rate constants of the thermal unimolecular decomposition of NCN3 in argon have been extracted from 1NCN concentration–time profiles in the temperature range 617 K <T< 927 K and at two different total densities: k(ρ ≈ 3 × 10?6 mol/cm3)/s?1=4.9 × 109 × exp (?71±14 kJ mol?1/RT) (± 30%); k(ρ ≈ 6 × 10?6 mol/cm3)/s?1=7.5 × 109 × exp (‐71±14 kJ mol?1/RT) (± 30%). In addition, high‐temperature 1NCN absorption cross sections have been determined in the temperature range 618 K <T< 1231 K and can be expressed by σ /(cm2/mol)= 1.0 × 108 ?6.3 × 104 K?1 × T (± 50%). Rate constants for the CIISC process have been measured by monitoring 3NCN in the temperature range 701 K <T< 1256 K resulting in kCIISC (ρ ≈ 1.8 ×10?6 mol/cm3)/ s?1=2.6 × 106× exp (‐36±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 3.5×10?6 mol/cm3)/ s?1 = 2.0 × 106 × exp (?31±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 7.0×10?6 mol/cm3)/ s?1=1.4 × 106 × exp (?25±10 kJ mol?1/RT) (± 20%). These values are in good agreement with CIISC rate constants extracted from corresponding 1NCN measurements. The observed nonlinear pressure dependences reveal a pressure saturation effect of the CIISC process. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 30–40, 2013  相似文献   

12.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

13.
The gas-phase thermal isomerization of N-propylidenecyclopropylamine has been studied in the temerature range of 573° to 635°K. The reaction is homogeneous and kinetically first order and yields 5-ethyl-1-pyrroline as the sole product. The rate constants are independent of pressure in the range of 2.5 to 55 torr and fit the Arrhenius relationship log k(sec?1) = (14.05 ± 0.06) - (47.77 ± 0.16)/θ where θ = 2.303 RT in units of kcal/mole, or log k(sec?1) = (14.05 ± 0.06) - (199.9 ± 0.7)/θ, where θ = 2.303RT in kJ/mole. From considerations of a biradical pathway it is concluded that the resonance stabilization energy of the substituted 2-aza-allyl radical is very similar to that of the methallyl radical.  相似文献   

14.
4-Chloro-1-butene, 5-chloro-1-pentene, and 6-chloro-1-hexene have been shown to decompose, in a static system, mainly to hydrogen chloride and the corresponding alkadienes. In packed and unpacked clean Pyrex vessels the reactions were significantly heterogeneous. However, in a vessel seasoned with allyl bromide these reactions were homogeneous, unimolecular, and follow a first-order law. The working temperature range was 389.6–480.0°C and with a pressure range of 53–221 Torr. The rate constants for the homogeneous reactions were expressed by the following Arrhenius equations: 4-chloro-1-butene: logk(sec?1) = (13.79 ± 0.17) – (223.8 ± 2.1)kJ/mole/2.303RT; 5-chloro-1-pentene: logk(sec?1) = (14.25 ± 1.20) – (238.4 ± 12.7)kJ/mole/2.303RT; and 6-chloro-1-hexene: logk(sec?1) = (12.38 ± 0.22) – (209.6 ± 2.9)kJ/mole/2.303RT. The olefinic double bond has been found to participate in the rate of dehydrohalogenation of 4-chloro-1-butene. The insulation of the CH2?CH in chlorobutene by one or two methylene chains to the reaction center does not indicate neighboring group participation. The three-membered conformation is the most favored structure for anchimeric assistance of the double bond in gas phase pyrolysis of alkenyl chlorides. The heterolytic nature of these eliminations is also supported by the present work.  相似文献   

15.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

16.
The reactions of ground-state oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane have been studied in a crossed molecular jet reactor in order to determine the initial reaction products and in a fast-flow reactor in order to determine their overall rate constants at temperatures between 250 and 500 K. These rate constants are??(O + C2CS) =(3.09 ± 0.54) × 10?11 exp(+115 ± 106 cal/mol/RT),??(O + F2CS) = (1.22 ± 0.19) × 10?11 exp(-747 ± 95 cal/mol/RT), and??(O + F4C2S2) = (2.36 ± 0.52) × 10?11 exp(-1700 ± 128 cal/mol/RT) cm3/molec˙sec. The detected reaction products and their rate constants indicate that the primary reaction mechanism is the electrophilic addition of the oxygen atom to the sulfur atom contained in the reactant molecule to form an energy-rich adduct which then decomposes by C-S bond cleavage.  相似文献   

17.
The decomposition of dimethyl peroxide (DMP) was studied in the presence and absence of added NO2 to determine rate constants k1 and k2 in the temperature range of 391–432°K: The results reconcile the studies by Takezaki and Takeuchi, Hanst and Calvert, and Batt and McCulloch, giving log k1(sec?1) = (15.7 ± 0.5) - (37.1 ± 0.9)/2.3 RT and k2 ≈ 5 × 104M?1· sec?1. The disproportionation/recombination ratio k7b/k7a = 0.30 ± 0.05 was also determined: When O2 was added to DMP mixtures containing NO2, relative rate constants k12/k7a were obtained over the temperature range of 396–442°K: A review of literature data produced k7a = 109.8±0.5M?1·sec?1, giving log k12(M?1·sec?1) = (8.5 ± 1.5) - (4.0 ± 2.8)/2.3 RT, where most of the uncertainty is due to the limited temperature range of the experiments.  相似文献   

18.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

19.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Rate constants for the reactions of Cl atoms with two cyclic dienes, 1,4‐cyclohexadiene and 1,5‐cyclooctadiene, have been determined, at 298 K and 800 Torr of N2, using the relative rate method, with n‐hexane and 1‐butene as reference molecules. The concentrations of the organics are followed by gas chromatographic analysis. The ratios of the rate constants of reactions of Cl atoms with 1,4‐cyclohexadiene and 1,5‐cyclooctadiene to that with n‐hexane are measured to be 1.29 ± 0.06 and 2.19 ± 0.32, respectively. The corresponding ratios with respect to 1‐butene are 1.50 ± 0.16 and 2.36 ± 0.38. The absolute values of the rate constants of the reaction of Cl atom with n‐hexane and 1‐butene are considered as (3.15 ± 0.40) × 10?10 and (3.21 ± 0.40) × 10? 10 cm3 molecule?1s?1, respectively. With these, the calculated values are k(Cl + 1,4‐cyclohexadiene) = (4.06 ± 0.55) × 10?10 and k(Cl + 1,5‐cyclooctadiene) = (6.90 ± 1.33) × 10?10 cm3 molecule?1 s?1 with respect to n‐hexane. The rate constants determined with respect to 1‐butene are marginally higher, k(Cl + 1,4‐cyclohexadiene) = (4.82 ± 0.80) × 10? 10 and k(Cl + 1,5‐cyclooctadiene) = (7.58 ± 1.55) × 10? 10 cm3 molecule?1 s?1. The experiments for each molecule were repeated three to five times, and the slopes and the rate constants given above are the average values of these measurements, with 2σ as the quoted error, including the error in the reference rate constant. The relative rate ratios of 1,4‐cyclohexadiene with both the reference molecules are found to be higher in the presence of oxygen, and a marginal increase is observed in the case of 1,5‐cyclooctadiene. Benzene is identified as one major product in the case of 1,4‐cyclohexadiene. Considering that the cyclohexadienyl radical, a product of the hydrogen abstraction reaction, is quantitatively converted to benzene in the presence of oxygen, the fraction of Cl atoms that reacts by abstraction is estimated to be 0.30 ± 0.04. The atmospheric implications of the results are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 431–440, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号