首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O2 adsorption on TiO2; (ii) the effect of OH group on the O2 adsorption is surprisingly long-ranged; and (iii) O2 can also diffuse along the channel of Ti (5c) atoms on TiO2(110), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O2 is supplied by O2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O2, and the O2 adsorption energy depends linearly on the O2 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.  相似文献   

2.
This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ~1.5 nm and two-atomic layer height corresponding to ~50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.  相似文献   

3.
Fourier transform infrared spectra of CO adsorption from 120 K up to room temperature on two gold catalysts supported on different mixed ceria-titania oxides are discussed in comparison with those obtained on Au/TiO(2) and Au/Fe(2)O(3) reference catalysts provided by the World Gold Council. The spectra of adsorbed CO, run on the different samples before preliminary treatment, are shown and compared with those of the untreated catalysts and of the samples reduced either in CO or in hydrogen. Big differences have been found between the ceria-titania supported samples and the reference ones: unusual absorption bands, irreversible to outgassing, have been detected after CO interaction on the untreated and oxidized ceria containing samples. These absorptions are assigned to CO on Au(n)(+) small clusters stabilized at the ceria defects. By reduction in hydrogen, negatively charged Au(n)(-) species are produced on the same sample. Oxidized small particles are present on the reference catalysts, but only on the untreated samples; after treatment, only metallic step sites are evident.  相似文献   

4.
Chemisorbed acetate species derived from the adsorption of acetic acid have been oxidized on a nano-Au/TiO(2) (~3 nm diameter Au) catalyst at 400 K in the presence of O(2)(g). It was found that partial oxidation occurs to produce gold ketenylidene species, Au(2)═C═C═O. The reactive acetate intermediates are bound at the TiO(2) perimeter sites of the supported Au/TiO(2) catalyst. The ketenylidene species is identified by its measured characteristic stretching frequency ν(CO) = 2040 cm(-1) and by (13)C and (18)O isotopic substitution comparing to calculated frequencies found from density functional theory. The involvement of dual catalytic Ti(4+) and Au perimeter sites is postulated on the basis of the absence of reaction on a similar nano-Au/SiO(2) catalyst. This observation excludes low coordination number Au sites as being active alone in the reaction. Upon raising the temperature to 473 K, the production of CO(2) and H(2)O is observed as both acetate and ketenylidene species are further oxidized by O(2)(g). The results show that partial oxidation of adsorbed acetate to adsorbed ketenylidyne can be cleanly carried out over Au/TiO(2) catalysts by control of temperature.  相似文献   

5.
Au atoms have been deposited on oxidized and reduced TiO2 thin films grown on Mo(110). The gold binding sites and the occurrence of Au-TiO2 charge transfer were identified by measuring infrared spectra as a function of temperature and substrate preparation. The results have been interpreted by slab model DFT calculations. Au binds weakly to regular TiO2 sites (De < 0.5 eV) where it remains neutral, and diffuses easily even at low temperature until it gets trapped at strong binding sites such as oxygen vacancies (De = 1.7 eV). Here, a charge transfer from TiO2 to Au occurs. Au(delta-)CO complexes formed on oxygen vacancies easily lose CO (De = 0.4 eV), and the CO stretching frequency is red-shifted. On nondefective surfaces, CO adsorption induces a charge transfer from Au to TiO2 with formation of strongly bound Audelta+CO complexes (De = 2.4 eV); the corresponding CO frequency is blue-shifted with respect to free CO. We propose possible mechanisms to reconcile the observed CO desorption around 380 K with the unusually high stability of Au-CO complexes formed on regular sites predicted by the calculations. This implies: (a) diffusion of AuCO complexes above 150 K; (b) formation of gold dimers when the diffusing AuCO complex encounters a Au atom bound to an oxygen vacancy (reduced TiO2) or a second AuCO unit (oxidized TiO2); and (c) CO desorption from the resulting dimer, occurring around 350-400 K.  相似文献   

6.
The heats of adsorption of two linear CO species adsorbed on the Au degrees particles (denoted L(Au degrees)) and on the Ti(+delta) sites (denoted L(Ti+delta)) of a 1% Au/TiO(2) catalyst are determined as the function of their respective coverage by using the AEIR procedure (adsorption equilibrium infrared spectroscopy) previously developed. Mainly, the evolutions of the IR band area of each adsorbed species (2184 cm(-1) for L(Ti+delta) and at 2110 cm(-1) for L(Au degrees)) as a function of the adsorption temperature T(a), at a constant CO adsorption pressure P(CO), provide the evolutions of the coverages theta(LTi+delta) and theta(LAu degrees ) of each adsorbed CO species with T(a) in isobar conditions that give the individual heats of adsorption. It is shown that they linearly vary from 74 to 47 kJ/mol for L(Au degrees ) and from 50 to 40 kJ/mol for L(Ti+delta) at coverages 0 and 1, respectively. These values are consistent with literature data on model Au particles and TiO(2). In particular, it is shown that the mathematical formalism supporting the AEIR procedure can be applied to literature data on Au-containing solids (single crystals and model particles).  相似文献   

7.
The adsorption and reaction in supercritical CO2 of the titanate coupling reagent NDZ-201 on the surfaces of seven metal oxide particles, SiO2, Al2O3, ZrO2, TiO2 (anatase), TiO2 (rutile), Fe2O3, and Fe3O4, was investigated. FTIR and TG analysis indicated that the adsorption and reaction were different on different particle surfaces. On SiO2 and Al2O3 particles, there was a chemical reaction of the titanate coupling reagent on the surfaces. On the surfaces of ZrO2 and TiO2 (anatase) particles, there were two kinds of adsorption, weak and strong adsorption. On the surfaces of TiO2 (rutile), Fe2O3, and Fe3O4 particles, there was only weak adsorption. The acidity or basicity of the OH groups on the particle surface was the key factor that determined if a surface reaction occurred. When the OH groups were acidic, the titanate coupling reagent reacted with these, but otherwise, there was no reaction. The surface density of OH groups on the original particles and the amount of titanate coupling reagent adsorbed and reacted were estimated from TG analysis. The reactivity of the surface OH groups of Al2O3 particles was higher than that of the SiO2 particles.  相似文献   

8.
The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.  相似文献   

9.
10.
The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2) supports allowed the imaging of the active catalyst and enabled a precise determination of the Au particle size distribution and particle shape using transmission electron microscopy (TEM). Further, the apparent reaction orders and the stretching frequency of CO adsorbed on Au(0) (near 2100 cm(-1)) determined by diffuse reflectance infrared spectroscopy (DRIFTS) depend on d. Because of the changes in reaction rates, kinetics, and the CO stretching frequency with number average Au particle size, it is determined that the dominant active sites are the low coordinated corner Au sites, which are 3 and 7 times more active than the perimeter Au sites for Au/Al(2)O(3) and Au/TiO(2) catalysts, respectively, and 10 times more active for Au on TiO(2) versus Al(2)O(3). From operando Fourier transform infrared spectroscopy (FTIR) experiments, it is determined that the active Au sites are metallic in nature. In addition, Au/Al(2)O(3) catalysts have a higher apparent H(2)O order (0.63) and lower apparent activation energy (9 kJ mol(-1)) than Au/TiO(2) catalysts with apparent H(2)O order of -0.42 to -0.21 and activation energy of 45-60 kJ mol(-1) at near 120 °C. From these data, we conclude that the support directly participates by activating H(2)O molecules.  相似文献   

11.
采用溶胶-凝胶法制备了TiO2以及La2O3-TiO2载体, 再用沉积沉淀法制备Au/TiO2和Au/La2O3-TiO2催化剂, 并对催化剂的CO氧化反应活性进行测试. 结果表明, La2O3助剂可以显著提高催化剂催化氧化CO的活性. X射线衍射(XRD)、程序升温脱附(TPD)、N2吸附-脱附(BET)表征结果表明, La2O3助剂不仅提高了催化剂比表面积, 抑制了TiO2晶粒尺寸的长大, 并且增强了TiO2的晶格应变, 在O2气氛吸附过程中主要在TiO2表面形成O-物种. 原位傅立叶变换红外(FT-IR)结果进一步表明, La的掺杂不仅提高了吸附在Au活性位CO的氧化速率, 还使TiO2表面形成第二种活性位, 从而显著提高了催化活性.  相似文献   

12.
Infrared reflection absorption spectroscopy (IRAS) has been used to study CO adsorption on Au clusters ranging in size from 1.8 to 3.1 nm, supported on TiO(2). The adsorbed CO vibrational frequency blue-shifts slightly (approximately 4 cm(-)(1)) compared to that adsorbed on bulk Au, whereas the heats of adsorption (-DeltaH(ads)) increase sharply with decreasing cluster size, from 12.5 to 18.3 kcal/mol.  相似文献   

13.
A first-principles quantum chemistry method, based on the Kohn-Sham density-functional theory, is used to investigate the adsorption of CO and O2 on small gas-phase gold cluster anions. The saturated adsorption of carbon monoxide on gold cluster anions AuN- (N=2-7) is discussed. The adsorption ability of CO reduces with the increase of the number of CO molecules bound to gold cluster anions, resulting in saturated adsorption at a certain amount of absorbed CO molecules, which is determined by geometric and electronic properties of gold clusters cooperatively. The effect of CO preadsorption on the electronic properties of gold cluster anions depends on the cluster size and the number of adsorbed CO, and the vertical detachment energies of CO-adsorbed gold cluster anions show a few changes with respect to corresponding pure gold cluster anions. The results indicate that the impinging adsorption of CO molecules may lead to geometry structure transformation on Au3- cluster. For the coadsorption of CO and O2 on Au2-, Au3- isomers, Au4-, and Au6-, we describe the cooperative adsorption between CO and O2, and find that the O2 dissociation is difficult on gas-phase gold cluster anions even with the preadsorption of CO.  相似文献   

14.
The TiO(2) photocatalytic oxidation mechanism was theoretically investigated by using long-range corrected time-dependent density functional theory (LC-TDDFT) with a cluster model of the anatase TiO(2)(001) surface. We found that LC-TDDFT with the cluster model quantitatively reproduces the photoexcitations of the TiO(2) surface by calculating the electronic spectra of a clean TiO(2) surface and one with oxygen defects. We calculated the electronic spectra of a molecularly adsorbed TiO(2) surface for the adsorptions of phenol, methanol, and methane molecules as typical organic molecules. We obtained the surprising result that the main peak of the phenol-adsorbed TiO(2) surface, which overlaps with the main peak of the clean TiO(2) surface, corresponds to charge transfers from the phenol molecule to the TiO(2) surface. This indicates that the TiO(2) photocatalytic oxidation proceeds through direct charge transfer excitation from the substrate molecules to the TiO(2) surface. In contrast, we found slight and no charge transfer for methanol and methane adsorption, respectively, in agreement with the experimental findings for their reactivities. In light of these results, we propose a new mechanism for heterogeneous TiO(2) photocatalytic oxidations.  相似文献   

15.
在全电子相对论BVP86/DNP水平下对CO在Au55,Ag55和Cu55团簇上的吸附进行了比较研究,并考察了电荷对吸附的影响.计算结果表明,CO在Au55团簇上吸附能最大,其次为Cu55团簇,最弱的为Ag55团簇.团簇电荷对C—O键活化和CO与团簇表面原子成键影响较小.金团簇的电荷对吸附能影响较大,而银和铜团簇的电荷对吸附能影响较小.CO吸附到团簇上导致团簇上电子向CO转移.C—O键活化强度与吸附位置密切相关,其中孔位吸附导致C—O键活化程度最大,最弱的为顶位吸附.CO在金团簇上吸附具有较好选择性,而在银和铜团簇上吸附无选择性.  相似文献   

16.
Aiming to understand the role of the substrate in the adsorption of carbon monoxide on gold clusters supported on metal-oxides, we have started a study of that process on two different alumina substrates: an amorphous-like fully relaxed stoichiometric (Al2O3)20 cluster and the Al terminated (0001) surface of alpha-(Al2O3) crystal. In this paper, we present first principles calculations for the adsorption of one Au atom on both alumina substrate and the adsorption of Au8 on (Al2O3)20. Then, we study the CO adsorption on the minimum energy structure of these three different gold/alumina systems. A single Au adsorbs preferably on top of an Al atom with low coordination, the binding energy being higher in the case of Au/(Al2O3)20. CO absorbs preferably on top of the Au atom, but in the case of Au/(Al2O3)20, Au forms a bridge with the Al and O substrate atoms after CO adsorption. We find other stable sites for CO adsorption on the cluster but not on the surface. This result suggests that the Au activity toward CO may be larger for the amorphous cluster than for the crystal surface substrate. For the most stable Au8/(Al2O3)20 configuration, two Au atoms bind to Al and a O atoms respectively and CO adsorbs on top of the Au which binds to the Al atom. We find other CO adsorption sites on supported Au8 which are not stable for the free Au8 cluster.  相似文献   

17.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.  相似文献   

18.
The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.  相似文献   

19.
Adsorption and reactions of CO(2) in the presence of H(2)O and OH species on the TiO(2) rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H(2)O (OH) species slightly increase the CO(2) adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO(2) with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcal∕mol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO(2) and H(2)O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO(2) and water on rutile (110).  相似文献   

20.
The unique catalytic activity of supported Au nanoparticles has been ascribed to various effects including thickness/shape, the metal oxidation state, and support effects. Previously, we reported the synthesis of ordered Au monolayers and bilayers on TiO(x), with the latter being significantly more active for CO oxidation than the former. In the present study, the electronic and chemical properties of ordered monolayer and bilayer Au films have been characterized by infrared reflection adsorption spectroscopy using CO as a probe and ultraviolet photoemission spectroscopy. The Au overlayers are found to be electron-rich and to have significantly different electronic properties compared with bulk Au. The common structural features of ordered Au bilayers and Au bilayer nanoparticles on TiO2(110) are described, and the exceptionally high catalytic activity of the Au bilayer structure related to its unique electronic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号