首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis of Protected 1-Deoxy-1-nitroaldoses The direct oxidation of the oxime 1 with t-butyl hydroperoxide and vanadyl acetylacetonate yielding the nitro derivative 2 (54%, Scheme 1) could not be applied to other oximes. Diastereoselective bromination of the aldonolactone oxims 7 and 10–12 according to known procedures gave the corresponding bromonitroso compounds which were oxidized to the bromonitro compounds 9, 14, 18 and 22 , respectively. Oxidation of the bromonitroso compound in the D-mannopyranose series proved difficult, but the corresponding chloronitro derivative 23 was easily obtained according to Corey & Estreicher (Scheme 2 and 3). The structure of the bromonitro compound 9 was determined by an X-ray analysis, and the configurations of the bromonitro compounds 14, 18 and 22 were deduced from their molecular rotations. Reduction of the bromonitro compounds gave the protected 1-deoxy-l-nitroaldoses 2 , 15/16 , 19/20 , and 24/25 , respectively, in good overall yields. The ribose derivatives 15 and 16 were detritylated to give the nitro compound 4 , and the mannose derivative 2 was partially deprotected to give the monoisopropylidene compound 26 . The nitro group shows a normal anomeric effect which is reflected in the IR . spectra of the pyranose derivatives 19 and 20 , and 24 and 25 .  相似文献   

2.
3.
4.
Preparation of Unprotected and Partially Protected 1-Deoxy-1-nitro-D -aldoses and Some Representative X-Ray Structure Analyses The unprotected and partially protected 1-deoxy-1-nitro derivatives of α-and β-D -glucopyranose (see 15 and 14 ), β-D -mannopyranose (see 16 ), N-acetyl-β-D -glucosamine (see 17 ), β-D -galactofuranose (see 19 ), β-D -ribofuranose (see 20 ), α-D -arabinofuranose (see 21 ), 4,6-O-benzylidene-β-D -glucose (see 40 ), N-acetyl-4,6-O-benzylidene-β-D -glucosamine (see 41 ), and 4,6-O-benzylidene-β-D -galactose (see 42 ) were prepared by ozonolysis of the corresponding nitrones which were obtained from the acid-catalyzed reaction of p-nitrobenzaldehyde with the hydroxylamine 4 , the unprotected oximes 3 and 5–9 and the 4,6-O-benzylidene oximes 35–37 , respectively (Schemes 1–3). The gluco- and manno-nitrones 10 and 12 were isolated, and their ring size and their anomeric and (E/Z) configurations were determined by NMR spectroscopy and by their transformation into their corresponding nitro derivatives. The structure of the deoxynitroaldoses were determined by NMR spectroscopy, polarimetry, and, in the case of 14 , 16 , and 17 , by formation of the 4,6-O-benzylidene ( 14 → 40 ) or 4,6-O-isopropylidene ( 16 → 43 , 17 → 23 ) derivatives (Scheme 3). Acetylation of the nitroglucopyranose 14 , the 2-acetamido-nitroglucopyranose 17 , and the nitrogalactofuranose 19 gave the crystalline peracetylated nitroaldoses 22 , 24 , and 45 , respectively (Scheme 4, Figs. 1 and 3); acetylation of the nitromannopyranose 16 gave the nitro-arabino-glycal 44 (Scheme 4). The structure of the peracetylated nitroglucopyranose 22 , the nitroglucosamine 25 , the nitrogalactofuranose 45 , and the nitroribofuranose 20 were confirmed by X-ray analysis (Figs. 1 4). In all cases, including the β-D -glucopyranose derivative 22 , considerably shortening of the (endocyclic) C(1)-O bond was observed. Base-catalyzed anomerization of the β-D -configurated nitroglucopyranose 14 , the nitromannopyranose 16 , the benzylidene acetal 40 of nitroglucose, and the 2,3,4,6-tetraacetylated glucosamine derivative 24 gave the corresponding nitro-α-D -aldoses 15 , 26 , 47 , and 25 , respectively (Scheme 4).  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
CH-Acidity in α-position to the N-Atom of N, N -Dialkylamides with Sterically Protected Carbonyl Groups Contribution to the Nucleophilic Amino Alkylation Sterically protected amides 1 such as the 2,4,6-triisopropyl-benzoic acid derivatives 3, 8b and 10 undergo readily H/Li-exchange with s-butyllithium at the CH3N- or CH2N-groups. The resulting organolithium compounds (cf. 9, 11 ) are alkylated and hydroxyalkylated with primary haloalkanes, aldehydes, and ketones under chain elongation in the amine position of the amides. The (E/Z)-rotamers of the dialkylamides 7 and 8 are separated by chromatography; the amides 4 – 6 , 12 , and 13 formally derived from β-hydroxyamines are obtained in the (Z)-form only. The configurational (E/Z)-assignments follow from NMR. and IR. data. The erythro and threo configuration of the two diastereomeric amides 12a and 12b are tentatively concluded from Eu(fod)3-1H-NMR.-shift experiments. The results strongly suggest that the H/Li-exchange takes place regioselectively at the CH? N group which is in cis-position to the C?O double bond (→ 14 ). The methyl 2,4,6-tri(t-butyl)benzoate ( 18 ) can also be deprotonated to the lithium acyloxymethanide 19 which is trapped by alkylation with 1-iodooctane (→ 20 ). – The steric protection of the carbonyl groups in the products 4 – 8, 10, 12, 13 , and 20 prevents their ready hydrolysis to amines and alcohols, respectively. Therefore, triphenylacetic acid derivatives 21 rather than 2,4,6-triisopropylbenzoic acid derivatives for use in the electrophilic substitution of equation (1) are recommended. The trityl group in 21 may be considered a C-leaving-group (C? C protective group, cf. 22, 23 ). The acetamide 25 reacts readily (→ 26 ) and then with electrophiles to give products 27a – c . As shown in the Table, the amides 27 are cleaved under a variety of conditions with formation of triphenylmethane. LiAlH4 produces a tertiary amine, CH3Li a secondary amine, and dissolving alkali metals/naphthalene under aprotic conditions mixtures of secondary amine and its formamide (hydrolysed by acid treatment). Thus the overall process (2) is feasible.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号