首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
WENO5 uses a convex combination of the polynomials reconstructed on the three stencils of ENO3 in order to achieve higher accuracy on smooth profiles. However, in some cases WENO5 generates oscillations or smears near discontinuities due to the time scheme used. Here, we present a method to reduce those oscillations without damping and this yields a sharper approximation. Our technique uses smoothness indicators to identify severe shocks and switches from WENO5 to ENO3. Numerical tests show that the behaviour of WENO5 is improved near discontinuities while preserving high accuracy on smooth profiles.  相似文献   

3.
An application of stability analysis by the energy method is made to a practical problem of unsteady viscous flow solved numerically by Fromm. The practical stability criterion for the scheme is determined and a rigorous proof of convergence to a smooth solution is given. It is also shown how to construct an energy for any 3-level scalar difference equation.  相似文献   

4.
To compute the value of a functionf(z) in the complex domain by means of a converging sequence of rational approximants {f n(z)} of a continued fraction and/or Padé table, it is essential to have sharp estimates of the truncation error ¦f(z)–f n(z)¦. This paper is an expository survey of constructive methods for obtaining such truncation error bounds. For most cases dealt with, {f n(z)} is the sequence of approximants of a continued fractoin, and eachf n(z) is a (1-point or 2-point) Padé approximant. To provide a common framework that applies to rational approximantf n(z) that may or may not be successive approximants of a continued fraction, we introduce linear fractional approximant sequences (LFASs). Truncation error bounds are included for a large number of classes of LFASs, most of which contain representations of important functions and constants used in mathematics, statistics, engineering and the physical sciences. An extensive bibliography is given at the end of the paper.Research supported in part by the U.S. National Science Foundation under Grants INT-9113400 and DMS-9302584.  相似文献   

5.
6.
We consider a fractional Adams method for solving the nonlinear fractional differential equation \(\,^{C}_{0}D^{\alpha }_{t} y(t) = f(t, y(t)), \, \alpha >0\), equipped with the initial conditions \(y^{(k)} (0) = y_{0}^{(k)}, k=0, 1, \dots , \lceil \alpha \rceil -1\). Here, α may be an arbitrary positive number and ?α? denotes the smallest integer no less than α and the differential operator is the Caputo derivative. Under the assumption \(\,^{C}_{0}D^{\alpha }_{t} y \in C^{2}[0, T]\), Diethelm et al. (Numer. Algor. 36, 31–52, 2004) introduced a fractional Adams method with the uniform meshes t n = T(n/N),n = 0,1,2,…,N and proved that this method has the optimal convergence order uniformly in t n , that is O(N ?2) if α > 1 and O(N ?1?α ) if α ≤ 1. They also showed that if \(\,^{C}_{0}D^{\alpha }_{t} y(t) \notin C^{2}[0, T]\), the optimal convergence order of this method cannot be obtained with the uniform meshes. However, it is well-known that for yC m [0,T] for some \(m \in \mathbb {N}\) and 0 < α < m, the Caputo fractional derivative \(\,^{C}_{0}D^{\alpha }_{t} y(t) \) takes the form “\(\,^{C}_{0}D^{\alpha }_{t} y(t) = c t^{\lceil \alpha \rceil -\alpha } + \text {smoother terms}\)” (Diethelm et al. Numer. Algor. 36, 31–52, 2004), which implies that \(\,^{C}_{0}D^{\alpha }_{t} y \) behaves as t ?α??α which is not in C 2[0,T]. By using the graded meshes t n = T(n/N) r ,n = 0,1,2,…,N with some suitable r > 1, we show that the optimal convergence order of this method can be recovered uniformly in t n even if \(\,^{C}_{0}D^{\alpha }_{t} y\) behaves as t σ ,0 < σ < 1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

7.
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

8.
9.
In this paper we perform a stability analysis of a fully discrete numerical method for the solution of a family of Boussinesq systems, consisting of a Fourier collocation spectral method for the spatial discretization and a explicit fourth order Runge–Kutta (RK4) scheme for time integration. Our goal is to determine the influence of the parameters, associated to this family of systems, on the efficiency and accuracy of the numerical method. This analysis allows us to identify which regions in the parameter space are most appropriate for obtaining an efficient and accurate numerical solution. We show several numerical examples in order to validate the accuracy, stability and applicability of our MATLAB implementation of the numerical method.  相似文献   

10.
11.
In this article we consider a spectral Galerkin method with a semi‐implicit Euler scheme for the two‐dimensional Navier‐Stokes equations with H2 or H1 initial data. The H2‐stability analysis of this spectral Galerkin method shows that for the smooth initial data the semi‐implicit Euler scheme admits a large time step. The L2‐error analysis of the spectral Galerkin method shows that for the smoother initial data the numerical solution u exhibits faster convergence on the time interval [0, 1] and retains the same convergence rate on the time interval [1, ∞). © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

12.
13.
We prove an L1 bound on the error made when the Wild summation for solutions of the Boltzmann equation for a gas of Maxwellian molecules is truncated at the nth stage. This gives quantitative control over the only constructive method known for solving the Boltzmann equation. As such, it has recently been applied to numerical computation but without control on the approximation made in truncation. We also show that our bound is qualitatively sharp and that it leads to a simple proof of the exponentially fast rate of relaxation to equilibrium for Maxwellian molecules along lines originally suggested by McKean. © 2000 John Wiley & Sons, Inc.  相似文献   

14.
Numerical Algorithms - In this paper, we introduce a new algorithm which combines the inertial projection and contraction method and the viscosity method for solving monotone variational inequality...  相似文献   

15.
Summary In a recent paper Meyer and Nelson [1] obtained error estimates for the Galerkin type spectral synthesis method relative to the continuous-energy, continuous-space, time independent neutron diffusion equation. These estimates were obtained under a coercivity condition which is not easily verifiable. The aim of this note is to replace that condition by a readily verifiable one.
Zusammenfassung In einer kürzlichen Publikation haben Meyer und Nelson [1] Fehlerabschätzungen für eine Galerkin-ähnliche Spektralsynthesemethode, angewandt auf die zeitunabhängige Neutronen-diffusionsgleichung mit kontinuierlicher Abhängigkeit von Energie und Ort, diskutiert. Die Abschätzungen wurden unter einer nicht leicht überprüfbaren Zwangsbedingung erhalten. Das Ziel dieser Arbeit ist, diese Bedingungen durch eine bequem verifizierbare zu ersetzen.
  相似文献   

16.
In this paper, we propose an effective spectral method based on dimension reduction scheme for fourth order problems in polar geometric domains. First, the original problem is decomposed into a series of one‐dimensional fourth order problems by polar coordinate transformation and the orthogonal properties of Fourier basis function. Then the weak form and the corresponding discrete scheme of each one‐dimensional fourth order problem are derived by introducing polar conditions and appropriate weighted Sobolev spaces. In addition, we define the projection operators in the weighted Sobolev space and give its approximation properties, and further prove the error estimation of each one‐dimensional fourth order problem. Finally, we provide some numerical examples, and the numerical results show the effectiveness of our algorithm and the correctness of the theoretical results.  相似文献   

17.
This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection method, the velocity field is decoupled from the pressure field in the momentum equation. A Poisson equation, serving as the pressure solver, is obtained by which pressure field is decoupled completely from the velocity field. In particular, an exact projection scheme is deployed to fulfil the requirement of the divergence-free velocity field. The condition of incompressibility is satisfied by iteratively updating the density field till the convergence. The two-equation kε model is employed to describe the turbulence effects in Newtonian flows. It is shown that the discretised SPH schemes have the feature of both linear and angular momentum conservations. The semi-analytical wall method implements the appropriate integrals to evaluate the boundary contributions to the mass and momentum equations. In comparison to the boundary particle methods, it can greatly enhance the feasibility and efficiency with the complex geometries. The algorithm presented within this paper is applied to several academic test cases for which either analytical results or simulations with other methods are available. The comparisons verify that this scheme is provided with convincing efficiency and extensive applicability.  相似文献   

18.
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.  相似文献   

19.
Summary We present a simple joint strong approximation for the logarithms of record and inter-record times from an exchangeable sequence, including an exact estimation for the rate of convergence in terms of upper and lower class functions of a Wiener process. The approach chosen here allows for simple proofs of exact and asymptotic (joint) results for record and inter-record times, such as the Law of Large Numbers (LLN), Central Limit Theorem (CLT) and Law of the Iterated Logarithm (LIL), and others.Research supported by the Air Force Office of Scientific Research Contract No. F49620 85 C0144  相似文献   

20.
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a nonconforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasireliability and efficiency of the error estimator in comparison with the error in a natural (nonconforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 947–963, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号