首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses.  相似文献   

2.
The determination of the subduction coefficients for states of the unitary group U(n) under the restrictions U(n) ↓ U(n1) ? U(n2) have been considered for the spin free states of many electron systems. Using the transformation properties of the tensor basis spanning the irreducible representation 〈2N/2–S, 12S〉 of U(n) under the permutations of electron coordinates, a simple programmable procedure has been developed for the determination of these coefficients. The procedure has been illustrated using a simple example.  相似文献   

3.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

4.
The title compound, C14H18INO, crystallizes as +sc/+sp/+sc 2‐iodoanilide molecules (and racemic opposites) and shows significant intermolecular I...O interactions in the solid state, forming dimeric pairs about centres of symmetry. Under asymmetric Heck conditions, the S enantiomer of the dihydroindol‐2‐one was obtained using (R)‐(+)‐2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl [(R)‐BINAP], suggesting a mechanism that proceeds by oxidative addition to give the title (P) enantiomer of the compound and pro‐S coordination of the Re face of the alkene in a conformation similar to that defined crystallographically, except that rotation about the C—C bond of the butenyl group is required.  相似文献   

5.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

6.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

7.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

8.
In the title compound, also known as N‐carbamoyl‐l ‐proline, C6H10N2O3, the pyrrolidine ring adopts a half‐chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2)°. Molecules are joined by N—H...O and O—H...O hydrogen bonds into cyclic structures with graph‐set R22(8), forming chains in the b‐axis direction that are further connected via N—H...O hydrogen bonds into a three‐dimensional network.  相似文献   

9.
A new non‐centrosymmetrical form of lithium molybdyl arsenate has been synthesized and grown as a single crystal. The structure of β‐LiMoO2(AsO4) is built up of corner‐sharing AsO4 tetrahedra and MoO6 octahedra which form a three‐dimensional framework containing tunnels running along the a axis, wherein the Li+ cations are located. This novel structure is compared with the compound LiMoO2(AsO4) of the same formula, and with those of AMO2(XO4) (A is Na, K, Rb or Pb, M is Mo or V, and X is P or As) and B(MoO2)2(XO4)2 (B is Ba, Pb or Sr).  相似文献   

10.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

11.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

12.
The zinc alkoxide molecules in di‐μ3‐ethanolato‐diethyltetrakis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)tetrazinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis(μ3‐2‐ethoxyphenolato‐κ4O1,O2:O1:O1)bis(μ2‐2‐ethoxyphenolato‐κ3O1,O2:O1)bis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)bis(2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ2O3,O4)tetrazinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetrameric unit and additionally one molecule of toluene for (II). The ZnII atoms are four‐ and six‐coordinated in distorted tetrahedral and octahedral geometries for (I), and six‐coordinated in a distorted octahedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetrahedra and ZnO6 octahedra for (I), and of four ZnO6 octahedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2‐bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3‐ and μ2‐bridges.  相似文献   

13.
In the five‐membered ring in the title compound, (2‐amino­ethoxy)­bis(2‐thienyl)­boron, C10H12BNOS2, the B atom is four‐coordinate with dimensions N—B 1.654 (3), O—B 1.479 (3), and C—B 1.606 (3) and 1.609 (3) Å. An intermolecular hydrogen bond between an amino H atom and the ethoxy O atom links the mol­ecules into infinite chains along the a axis. Only one of the two amino H atoms is involved in hydrogen bonding because there is only the one acceptor atom, the ethoxy O atom, and the molecular geometry precludes formation of a second hydrogen bond by the second amino H atom.  相似文献   

14.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

15.
The synthesis and single crystal X‐ray structure determination are reported for the 2,2′ : 6′,2″‐terpyridine (= tpy) adduct of bismuth(III) nitrate. The hydroxide‐bridged dimer [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy)(η2‐NO3)2] with nine‐coordinate geometry about Bi was the only isolable product from all crystallization attempts in varying ratios of Bi(NO3) : terpy.; [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy) · (η2‐NO3)2] is triclinic, P 1, a = 7.941(8), b = 10.732(9), c = 11.235(9) Å; α = 63.05(1), β = 85.01(1), γ = 79.26(1)°, Z = 1, dimer, R = 0.058 for N0 = 2319.  相似文献   

16.
In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8)°, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6)°. In both mol­ecules, the double bond connecting the methyl­nitro­vinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P212121 for (II)], the mode of packing of compounds (I) and (II) is determined by similar inter­molecular N—H⋯O hydrogen‐bonding inter­actions, forming chains that run parallel to [101] in (I) and [001] in (II).  相似文献   

17.
An intermolecular [4 + 2] cycloaddition was realized through C—C bond cleavage in the presence of Rh(I) catalyst. The selective ring opening of 2‐alkylenecyclobutanols enables the generation of active alkenylrhodium species, which underwent smooth cross addition over alkynes and (E)‐2‐nitroethenylbenzene, leading to highly substituted all‐carbon six‐membered rings in a single step and in a complete atom economy.  相似文献   

18.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

19.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号