首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

2.
The valence state of transition metal ions in the Co1–x Fe x Cr2O4 (x = 0.1, 0.2, 0.5) system has been investigated using X-ray photoelectron and Mössbauer spectroscopy. It has been shown that, in this system, there are Fe2+ and Fe3+ ions. The relative Fe3+/Fe2+ contents have been determined by fitting the experimental Fe 2p photoelectron spectra by a superposition of theoretical spectra of the Fe2+ and Fe3+ ions, as well as using Mössbauer spectroscopy.  相似文献   

3.
Polycrystalline Fe2BO4 was prepared by solid state reactions and its electronic and magnetic properties were investigated by Mössbauer spectroscopy and magnetization measurements. The Mössbauer spectra of Fe2BO4 below 270 K indicate the presence of Fe2+ and Fe3+ sites in the structure, in a ratio 1 : 1. Above this temperature electron delocalization sets in between the divalent and trivalent iron ions and Fe2.5+ states are observed. The temperature dependence of the Mössbauer spectra and magnetization measurements clearly show the onset of magnetic order below 155 K.  相似文献   

4.
57Fe Mössbauer effect study has been performed on intercalated compound 2H?Fe0.5TaSe2 over a temperature range between 14K and 500K. The highly concentrated intercalation samples 2H?FexTaSe2 with Fe atoms (x up to 2) are prepared by the electrochemical method for the first time. The Mössbauer measurement shows that iron is in Fe3+ high spin state and with the same probability occupies both octahedral and tetrahedral interstices of the Van der Waals gap. The fact that effective masses of iron ions in both sites are close to 57 amu and characteristic temperatures (ΘM =130K, 107K respectively) are found to be relatively small is attributed to the weak forces on Fe3+.  相似文献   

5.
We report here on the characterisation by temperature programmed reduction, 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy of the phases resulting from treatment of the perovskite-related material La0.5Sr0.5Fe0.5Co0.5O3 in a flowing 90% hydrogen/10% nitrogen atmosphere. The results show that treatment of La0.5Sr0.5Fe0.5Co0.5O3 (which contains approximately 50% Fe4+ and 50% Fe3+) in the flowing 90% hydrogen/10% nitrogen atmosphere at 600°C does not result in the reduction of any of the constituent elements of the material and that the perovskite structure is still retained. The Mössbauer spectrum recorded following heating in the gaseous reducing environment at 1,000°C shows the presence of metallic iron, an Fe3+-containing phase with parameters compatible with the presence of SrLaFeO4 which has a K2NiF4-type structure, and a paramagnetic Fe3+ phase. The X-ray absorption spectroscopy results show the presence of metallic cobalt. The Mössbauer spectrum recorded following heating at 1,200°C continues to show the Fe3+-containing components plus a larger contribution from metallic iron. The X-ray absorption spectroscopy results show the presence of metallic cobalt, SrLaFeO4, La2O3 and SrO.  相似文献   

6.
Eu0.8Sr0.2Fe x Co1?x O3?z CMR perovskites with different iron concentrations (x?=?0, 0.025, 0.075, 0.15, 0.3) were investigated by X-ray diffraction, AC magnetic susceptibility, magnetotransport, as well as 57Fe and 151Eu Mössbauer spectrometry. The valence state of europium ions was found to be trivalent, independently of the iron concentration. 57Fe Mössbauer spectra and magnetic susceptibility of the investigated perovskites presented complementary results for the magnetic transitions.  相似文献   

7.
The cation distribution and magnetic structure of Cu x Fe1?x Cr2S4 (x?=?0.1, 0.2, 0.3, 0.4, and 0.5) has been studied by X-ray and neutron diffraction, vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. The charge state of Fe is found to be ferrous (Fe2+) for the x?=?0.1 sample; ferric (Fe3+) for the x?=?0.5 sample; mixed state (Fe2+, Fe3+) for the x?=?0.2, 0.3, and 0.4 samples. The Mössbauer spectra of the x?=?0.1 sample show asymmetric line broadening, which is considered to be due to the Jahn–Teller effect of Cu2+ ions, and a symmetrical six-line pattern is shown for the x?=?0.5 sample. The valence state of the Cu ions for the x?=?0.1 and 0.5 samples is found to be divalent and monovalent, respectively. The magnetic structure of the samples was determined to be a ferrimagnetic structure with antiparallel alignment of the Fe and Cr ion magnetic moments.  相似文献   

8.
The electron paramagnetic resonance (EPR) and Mössbauer spectra of ironmolybdenum mixed oxides system have been investigated. Both EPR and Mössbauer measurements revealed the formation of ferric molybdate, Fe2 (MoO4)3 and the existence of two different Fe3+ species. The EPR spectra of Fe2 (MoO4)3, show two resonance lines of Fe3+ ions indicating that a strong exchange interaction is dominates in pure iron molybdate. Mösbauer measurements revealed that the isomer shift (I. S) increases with increasing the iron content. A maximum of quadrupole splitting (Q. S) is observed at the stoichiometric concentration corresponding to the formation of Fe2 (MoO4)3. The effect of a catalytaic dehydration process on the redox behaviour of Fe3+ located in iron molybdate frame work is investigated. Results indicate that the catalytaic dehydration of 2-proppanol over this catalyst reduces Fe3+ ions to Fe2+ leading to the formation of the inactive phase FeMoO4. the essential role of oxygen, in the alcohol gas feed, in regeneration the activity of the catalysts was demonstrated.  相似文献   

9.
The structural and magnetic properties of the mixed spinel Co1+xSnxFe2?2xO4 system for 0.1≤x≤0.5 have been studied by means of X‐ray diffraction, magnetization, a.c. susceptibility and Mössbauer effect measurements. X‐ray intensity calculations indicate that Sn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Co2+ ions substitute for A‐site Fe3+ ions. The lattice constants are determined and the applicability of Vegard's law has been tested. The Mössbauer spectra at 300 K have been fitted with two sextets in the ferrimagnetic state corresponding to Fe3+ at tetrahedral (A) and octahedral (B) sites for x≤0.4. The Mössbauer intensity data show that Sn possesses a preference for the B‐site of the spinel. As expected, the hyperfine field and Curie temperature determined from a.c. susceptibility decreases with increasing Sn content. The variation of the saturation magnetic moment per formula unit measured at 77 and 300 K with Sn content is satisfactorily explained on the basis of Néel's collinear spin ordering model for x=0.1–0.4.  相似文献   

10.
Experimental results on studying charge exchange in iron ions in systems of reduced dimensionality (nanoclays) of natural origin is presented. The conditions for the observation and the effect of different external factors on the reversible transition of the valence change for iron ions (Fe3+ ai Fe2+) in typical representatives of clays is established using Mössbauer spectroscopy. A technique of the determination of the location of iron complexes on the aluminosilicate surface of clays for Earth group planets is developed.  相似文献   

11.
The perovskite Bi0.5Ca0.5FeO3 has been investigated using the Mössbauer effect at temperatures of 295 and 675 K. The measured temperature of the magnetic phase transition (Néel temperature) is T N = 640 ± 10 K. Above the Néel temperature, there are two nonequivalent structural states of iron ions. In the perovskite Bi0.5Ca0.5FeO3 at room temperature, there are seven most probable nonequivalent magnetic states of iron ions with significantly different values of the hyperfine interaction parameters. Four iron states correspond to Fe3+ ions in the octahedral oxygen environment, and three iron states correspond to Fe3+ ions in the tetrahedral oxygen environment.  相似文献   

12.
57Fe Mössbauer spectroscopy was used to study the uptake and distribution of iron in the root of cucumber plants grown in iron-deficient modified Hoagland nutrient solution and put into iron-containing solution with 10 μM Fe citrate enriched with 57Fe (90%) only before harvesting. The Mössbauer spectra of the frozen roots exhibited two Fe3+ components with typical average Mössbauer parameters of δ?=?0.5 mm s?1, Δ?=?0.46 mm s?1 and δ?=?0.5 mm s?1, Δ?=?1.2 mm s?1 at 78 K and the presence of an Fe2+ doublet, assigned to the ferrous hexaaqua complex. This finding gives a direct evidence for the existence of Fe2+ ions produced via root-associated reduction according to the mechanism proposed for iron uptake for dicotyledonous plants. Monotonous changes in the relative content of the components were found with the time period of iron supply. The Mössbauer results are interpreted in terms of iron uptake and transport through the cell wall and membranes.  相似文献   

13.
57Fe Mössbauer spectra at room temperature, both with and without external magnetic field, indicate that Co2+ ions in CoxFe3?xO4spinels (x?0.04) are situated on the octahedral B sites. The Mössbauer parameters are listed and the existence of unpaired Fe3+ ions is evidenced.  相似文献   

14.
M-type strontium ferrites with substitution of Sr2+ by rare-earth La3+, according to the formula Sr1−xLaxFe12O19, are prepared by the ceramic process. Influences of the substituted amount of La3+ on structure and magnetic properties of Sr1−xLaxFe12O19 compounds have systematically been investigated by XRD, VSM and Mössbauer spectrum. When the substituted amount x is below 0.30, X-ray diffraction shows that the samples are single M-type hexagonal ferrites. It is found that the suitable amount of La3+ substitution may remarkably increase saturation magnetization σs and intrinsic coercivity HcJ. With the La3+ addition for the same sintering temperature, σs and HcJ increase at first, then decrease gradually. However, the substituted amount x at the maximum value of HcJ is bigger than that of σs. Mössbauer spectroscopy of 57Fe in Sr1−xLaxFe12O19 has shown that the substitution of Sr2+ by La3+ is associated with a valence change of Fe3+ to Fe2+ at 2a or 4f2 site. The magnetic properties are reflected in the Mössbauer spectra which indicate that the magnetic hyperfine field (Hhf) is detected with the highest value at x=0.20. The different exchange paths between the iron sublattices are discussed according to the increased hyperfine fields of the 12k- and 2b-site. The Curie temperature of Sr1−xLaxFe12O19 decreases linearly with increasing La3+ substitution.  相似文献   

15.
16.
Mössbauer measurements were performed on polycrystalline57Fe: Bi2Sr2Ca1Cu2O y , super-conductor in the temperature range of 77–296 K. The samples were obtained in a solid phase synthesis using 0.01, 0.03, 0.1 and 0.5 mol fractions of α-Fe2O3 (96% enriched in57Fe). A prevailing quadrupole doublet practically independent of temperature and iron concentration characterizes the obtained Mössbauer spectra. The corresponding hyperfine parameters suggest the presence of high spin Fe111 ions in a strongly distorted octahedral symmetry which indicates a probable copper substitution by iron in the system.  相似文献   

17.
Highly stable Fe1?δO:Al3+ system has been synthesized by checking the spontaneous disproportionation of FeO. The novel preparation route of incorporating non-magnetic trivalent Al3+ ions in the wustite lattice is followed for the preparation of solid solutions. X-ray diffraction (XRD), chemical analysis and Fe57 Mössbauer effect are used for the characterization. The hyperfine interaction parameters reported are characteristic of high spin Fe2+ state which confirmed the stabilization of FeO.  相似文献   

18.
The Mössbauer effect measurements performed on 20Fe2O3 80 3B2O3 (1?x)PbO xGeO2 glasses show that the ratio between the number of ferrous ions to the total number of iron ions decreases by increasing the GeO2 content. The Curie constants calculated from the distribution of iron cations obtained by Mössbauer effect data are in agreement with the values determined from magnetic measurements. Finally, we discuss the influence of the glass composition and melting temperature on the iron valence states.  相似文献   

19.
The X-ray photoelectron spectra of Mo 3d electrons (232.4–232.9 and 229.4–229.6 eV) for Mo-bearing ferrites have suggested that molybdenum ions are in the 4+ valence state on the lattice points in the spinel structure. The XPS data for Mo 3d and Fe 2p electrons combined with the Mössbauer data at room temperature suggest that Fe2MoO4 takes a valence state (Fe2+)tet[Fe2+Mo4+]octO4.  相似文献   

20.
The structural and magnetic properties of the mixed spinel Mg1+xMnxFe2-2xO4 system for 0.1<= x <= 0.9 have been studied by means of X-ray diffraction, magnetization, a.c. susceptibility and Mössbauer spectroscopy measurements. X-ray intensity calculations indicate that Mn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Mg2+ ions substitute for A-site Fe3+ ions. All samples are magnetic at 12 K displaying Mössbauer spectra that have magnetic sextets coexisting with a central doublet that increases in population with increasing Mn concentration, indicating the presence of short range ordering (clustering). The Mössbauer intensity data show that Mn possesses a preference for the B-site of the spinel over the whole range of concentration. As expected, the hyperfine field and Curie temperature determined from a.c.susceptibility data decrease with increasing Mn content. Magnetization results indicate that on increasing dilution x, the collinear ferrimagnetic phase breaks down at x = 0.3 before reaching the ferrimagnetic percolation limit (x=0.6), as a result of the presence of competing exchange interactions, which is well supported by Mössbauer results. From all the above results, it is proposed that with increasing Mn content from x=0.6 to 0.9, the frustration and disorder increase in the system suppressing the ferrimagnetic ordering, and the system approaches to a cluster spin glass type of ordering at x=0.8 as reflected in the a.c.susceptibility and Mössbauer spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号