首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete infrared study of the mixed crystal system of AgNO3 and NaNO3 is carried out in the region 400–4000 cm?1. The study includes internal fundamental normal vibrations of the NO?3 ion in the ordered and disordered phases of AgNO3 at different values of the sodium concentration, the I.R. spectra, spectral band shape intensities, and frequencies of the internal modes as functions of the sodium ion concentration. Special attention is paid to bending mode, combination mode, asymmetric stretching mode, and over-tone. The rotational energy barrier is determined at different concentrations of the sodium ions in the system.  相似文献   

2.
A complete infrared study of the mixed crystal system of NaNO3 and NaNO2 is carried out in the region 600—3000 cm—1 at room temperature. The study includes fundamental internal normal vibrations of the NO2 and NO3 ions. The IR spectra, spectral band shape intensities, combination modes, and frequencies of the internal modes were studied as a function of NO3 ion concentration. Special attention is paid to the bending mode, the combination mode, and a symmetric stretching mode.  相似文献   

3.
IR spectroscopy is utilized to analyse the mixed crystal system of AgNO3 and Sr(NO3)2 in the ordered phase II and disordered phases of silver nitrate. The study aims mainly to clearify the change and the affect of partial replacement of Ag+ ion by Sr++ ion in the mixed crystal system of the two metal nitrates. The change in the rotational energy barrier of the nitrate group was also checked.  相似文献   

4.
Polarized and depolarized Raman scattering spectra for the totally symmetric stretching υ1 mode of nitrate ions (D3h symmetry) in the molten binary systems (M1,Ag)NO3(M1= Li, Na, and K) have been measured. Vibrational and rotational autocorrelation3 functions, Cv(t) and Cr(t), respectively, have been evaluated from Fourier transformation of the spectra. The shifts in the peak frequencies are deeply correlated with the polarizability of silver in these mixtures. The vibrational relaxation rate increases with increasing mole fraction of silver nitrate in (K,Ag)NO3, but does not vary so much in (Li,Ag)NO3 and (Na,Ag)NO3. The vibrational relaxation time negatively deviates from additivity on the order of (Na,Ag)NO3< (Li,Ag)NO3< (K,Ag)NO3. In the systems (Na,Ag)NO3 and (K,Ag)NO3 rotational relaxation time becomes slower with increasing concentration of AgNO3. The Ag+ coordinating to several nitrate ions in these mixtures appreciably restricts the rotational motion of the nitrate ions. On the other hand, rotational motion becomes easier in the mixture system (Li,Ag)NO3 mainly because the different preferential sites of the two cations coordinating to an NO3 -ion, and partly because the exchange rates of these cations around the NO-3 -ion are high.  相似文献   

5.
A spectroscopic analysis of the various IR internal modes for the mixed crystal system of lithium nitrate and silver nitrate were carried out. The study aims mainly to find out the effect of partial replacement of Ag+ ion by Li+ ion on the internal fundamental modes of vibrations of the NO3? group in both of the ordering and disordering states of these two metallic nitrate compounds. The characteristic variations observed are attributed to differences in polarizability from cationic sphere around the nitrate group. An interesting increase of the maximum frequency observed on passing from pure components to mixtures is attributed to a change in force constant.  相似文献   

6.
Pb2+ ion conducting polymer composite electrolyte films, based on polyvinyl alcohol and polyethylene glycol doped with Pb(NO3)2 salt, were prepared using the solution cast technique. X-ray diffraction patterns of polymer composite with salt reveal the decrease in the degree of crystallinity with increasing concentration of the salt. The dielectric plots show an increase in dielectric permittivity at low frequency side with increasing salt concentration as well as temperature. The frequency dependence of ac conductivity obeys the Jonscher power law, and the maximum dc conductivity value is found to be 2.264×10?7 S/m at 303?K for the polymer composite with 30?mol% Pb(NO3)2. The activation energy for the ion in polymer electrolyte has been calculated from the modulus plots, and is in good agreement with the activation energy calculated from the temperature-dependent dc conductivity plot. The modulus plots indicate the non-Debye nature of the sample. For pure and doped films at room temperature, the impedance plots exhibit only one semicircle, indicating the presence of one type of conduction mechanism, whereas for 30?mol% salt doped with electrolyte film at different temperatures, it demonstrated the existence of bulk and electrode?Celectrolyte interface properties. Optical absorption spectra show a broad peak for all complexes, while compared with pure polymer composite, due to the complex formation of polymer electrolyte with Pb(NO3)2 and their absorption edge, direct band gap and indirect band gap were calculated. It was found that the absorption edge and energy gap values decreased on doping with Pb(NO3)2 dopant.  相似文献   

7.
Radiolysis of ferrous ammonium sulphate (FAS) dispersed in (a) alkali nitrates [KNO3, NaNO3, Ba(NO3)2, CO(NH3)6(NO3)3] (b) alkali halides [KCl, KBr] and (c) binary mixtures of above [KNO3 + KCl, Ba(NO3)2 + BaCl2) has been extensively investigated. FAS becomes oxidized and Fe3+ formation seems to depend upon the nitrate concentration and gamma dose but is independent of halide concentration. Mossbauer studies confirm these findings and it appears that basic ferric sulphate may be formed during the oxidation process.  相似文献   

8.
The Raman scattering cross section (RSCS) is an important parameter in the applications of Raman spectroscopy to make quantitative analysis. To date, the dependence of the RSCS on concentration has remained unclear. Nitrate aerosols can easily achieve a supersaturated state, which provides a way to obtain the RSCS especially under this state. In this study, Raman spectra of NaNO3 and Mg(NO3)2 solutions are obtained with molar water‐to‐solute ratios (WSRs) ranging from 84.2 to 2.30 and 93.8 to 7.32, respectively. With decreasing WSR, a shift to higher wavenumbers of the symmetric stretching band of nitrate ion, i.e. ν1(NO3), is observed, indicating the formation of various ion pairs. Meanwhile, the area ratio between the strongly and weakly hydrogen‐bonded components of water O H stretching envelope, i.e. ν(H2O), reduces as the WSR decreases, implying the transformation of water molecules from strong hydrogen‐bonding structures to the weak ones. However, a good linear relationship is revealed between the integrated intensity ratio of the ν(H2O) band to ν1(NO3) band and WSR. The results suggest that the RSCSs of NO3 and H2O are insensitive to the structures of both ion pairs and hydrogen‐bonding structures. This observation points to the possibility of conducting quantitative analysis through the area ratio of the ν(H2O) band to the ν1(NO3) band with Raman spectra without considering the formation of ion pairs and the variation of the hydrogen‐bonding structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The binary and ternary cyanide adducts of the ferric horseradish peroxidase were investigated by Fourier transform infrared spectroscopy. The carbon-nitrogen bond of the bound cyanide ion in the binary ferric cyanohorseradish peroxidase exhibits two stretching vibrations at 2130 cm?1 and 2127 cm?1 with the latter mode being observed in this work for the first time. This finding supports the results of the resonance Raman study of cyanohorseradish peroxidase, which identified two iron-carbon-nitrogen bending vibrations and two iron-carbon stretching vibrations, proving the existence of two conformational states. The identification of the latter carbon-nitrogen stretching frequency allowed the assignment of all of the vibrational modes of the iron-carbon-nitrogen groups of the two conformational states of the ferric cyanohorseradish peroxidase. The first conformer is characterized by a carbon-nitrogen stretch at 2130 cm?1, an iron-carbon stretch at 453 cm?1, and an iron-carbon-nitrogen bending mode at 405 cm?1. The second state has a carbon-nitrogen stretch at 2127 cm?1, an iron-carbon stretch at 360 cm?1, and an iron-carbon-nitrogen bending mode at 422 cm?1. The iron-carbon stretching band is weakly sensitive to pH changes, but it is sensitive to H2O/D2O substitution, indicating that the bound cyanide ion in cyanohorseradish peroxidase is hydrogen bonded to the surrounding protein. The two states were attributed to variation in the extent of hydrogen bonding of the iron-carbon-nitrogen groups in the two states. The carbon-nitrogen stretching vibrations of the ternary complexes of cyanohorseradish peroxidase with ferulic acid, benzamide, and benzhydroxamic acid have been investigated for the first time. The binding of the substrate to cyanohorseradish peroxidase does not always lead to the vanishing of one of the conformational states as in the carbon monoxide adducts of the ferrous horseradish peroxidase, but can cause shifts in the νC-N frequency and in the relative population of both conformational states.  相似文献   

10.
Abstract

The internal kinetics of NO2 as well as the kinetics of crossover between CH3F and NO3 were studied in mixtures of these polyatomics and rare gases.

Subsequent to excitation of the CH3F to v 3=1 by the P(20) line of a 9.6μ Q-switch CO2 laser, fluorescence of NO2 at 6.12μ from v 3=1 was monitored.

The equilibration rate of the stretching modes in NO2 was determined to be 46 ± 10 msec?1 torr?1 while the rate of stretches-bend equilibration was measured as 15 ± 3 msec?1 torr?1. The rate of crossover from excited CH3F to NO2 in high rare gas dilution was measured as 90 ± 20 msec?1 torr?1 and the reverse rate as 285 ± 60 msec?1 torr?1.

Comparison to other triatomic systems as well as other experiments with mixtures of polyatomics are made and implications of laser “photochemistry” of NO2 reactions are discussed.  相似文献   

11.
dc ionic conductivity measurements were made on single crystals of Pb(NO3)2 doped with monovalent Na+ and K+ in the temperature range of 100–400°C. In the extrinsic region the conductivity was found to decrease with Na+ having a smaller ionic size, and to increase with K+ with larger ionic size compared to the host Pb ion. Conductivity is attributed to the mobility of anti-Frenkel defects as in the case of PbF2. Dielectric loss measurements were made on the Pb(NO3)2: K+ system in the frequency range of 300 Hz to 20 kHz at different temperatures. Impurity vacancy pairs of the type K+-(NO-3)V are found to be responsible for the observed dielectric loss peaks. The maximum peak frequency is found to increase with temperature.  相似文献   

12.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

13.
Chuanyue Hu  Jun Guo  Jin Wen 《Ionics》2013,19(2):253-258
Copper oxide particles with different morphology (flower-like, peach kernel-like, and dandelion-like) are prepared with hydrothermal method by adjusting chitosan ((C6H11NO4)n) concentration in aqueous mixed solutions of ammonia and Cu(NO3)2. Various morphologies of porous cupric oxide (CuO) particles are formed by agglomerated nanosheet primary particles and lead to different electrochemical performance of electrodes. The peach kernel-shaped CuO exhibits high reversible capacity and rate capability. The reversible capacity is 722.7 mAh g?1 at 0.1 C in the first cycle and 339 mAh g?1 after 50 cycles at 0.2, 0.5, 1.0, and 2.0 C ratio. The higher reversible capacities and good cycling performance are attributed to the larger specific surface area, leading to better contact between CuO and electrolyte.  相似文献   

14.
Structural behaviour of silver nitrate (AgNO3) at low temperatures has been investigated by neutron powder diffraction and differential scanning calorimetry (DSC). Analysis showed abnormal changes in the rotations of nitrate (NO3) anions and thermal displacement parameters of the atoms near 220 K and 125 K. However, the basic lattice is compatible with the orthorhombic symmetry (space group Pbca) till 12 K. The fine, small-scale structural anomalies probably originate from freezing of reorientation of NO3 ions from high-temperature disordered phase.   相似文献   

15.
Potato starch (PS)-methyl cellulose (MC) blend solid biopolymer electrolytes infused with ammonium nitrate (NH4NO3) and glycerol as plasticizer are made via the solution cast technique. Fourier transform infrared (FTIR) spectroscopy indicates that NH4NO3 has interacted with the polymer blend host. The addition of 40 wt% glycerol in the highest conducting plasticizer free electrolyte has improved the conductivity to the order of ~10?3 S cm?1. The thermal stability of the electrolytes is identified by thermogravimetric analysis (TGA). Result from X-ray diffraction (XRD) analysis shows that the electrolyte with maximum conductivity value has the lowest degree of crystallinity. Differential scanning calorimetry (DSC) analysis reveals that the highest conducting plasticized electrolyte possesses the lowest glass transition temperature (T g) of ?27.5 °C. Conductivity trend is further verified by dielectric analysis. Transference numbers of ion (t ion) and electron (t e) for the highest conducting electrolyte are identified to be 0.98 and 0.02, respectively, confirming that ions are the dominant charge carriers. Linear sweep voltammetry (LSV) evaluates that the potential window for the electrolyte is 1.88 V. The internal resistance of the electrochemical double-layer capacitor (EDLC) is between 29 and 64 Ω. From the charged-discharged measurement, the value of C s is 31 F g?1. The EDLC is stable over 1000 cycles.  相似文献   

16.
Structural phase transition in AgNO3 at high temperature is simulated by molecular dynamics. The simulations are based on the potentials calculated from the Gordon-Kim modified electron-gas formalism extended to molecular ionic crystals. AgNO3 transforms into rhombohedral structure at high temperature and the phase transition is associated with the rotations of the NO3 ions and displacements of the NO3 and Ag ions.  相似文献   

17.
Abstract

The 12-coordinated hexakis(nitrato)europate(III) ion displays a luminescence spectrum compatible with Th, symmetry, with essentially a single emission line at 16 873 cm?1 arising from the 5D07F1 transition. At low temperature (4.2 - 170 K), the lifetime of the 5D0 level amounts to 10.9 ms and then sharply decreases because of vibrational de-excitation processes (Ea = 2 250 ± 1 490 cm?1). The forbidden 5D07F0 transition displays an extensive pattern of Stokes and anti Stokes vibrational components and its energy reflects a nephelauxetic parameter for the nitrite ions δO(NO2) equal to -14.4, slightly larger than the one associated to the nitrate ion in [Eu(NO3)6]3-. The ligand excitation spectrum contains several bands displaying extensive vibrational structure mostly due to the δ(NO2) vibrational mode.  相似文献   

18.
Abstract

Solid Cu(2-Benzoylpyridine)2(NO3)2 has been studied by UV-Vis, IR, and EPR (X-band, Q-band) techniques. Monoclinic crystal symmetry was determined with two molecules per unit cell. Copper (II) is coordinated by two benzoylpyridine ligands and a single NO3 group in the chromophore CuN2O3 of distorted trigonal bypiramidal stereochemistry. Exchange coupling values were determined from EPR spectra as |J| = 0.0026(2) cm?1 between magnetically nonequivalent copper (II) sites, and |J| < O.3 cm?1 between equivalent sites.

Results are discussed by a comparison with Cu(II)-benzoyl-pyridine complexes coordinated with azide N3 ? anions.  相似文献   

19.
Paramagnetic resonance absorption of centres with spin 1/2 centered aboutg=2 is reported in gamma-irradiated single crystals of Sr(NO3)2. At room temperature four centres are detected which appear to exhibit axial symmetry about the [111] crystal direction. Two of the observed centres have a resolved hyperfine structure of N14. This hyperfine structure and axial symmetry of the centres indicate that they could be irradiation products of the nitrate ion. To find the number of trapped electrons, a simplified calculation of the molecular orbitals of planar and pyramidal NO3 is carried out. Centres with a resolved hyperfine structure are then identified as pyramidal NO 3 ? and a NO2 molecule rotating about the [111] direction. Two centres without hyperfine structure are not identified exactly.  相似文献   

20.

The structure and properties of the paramagnetic centers formed by γ-irradiation at 77 K in sodium sulfate doped with nitrate ions have been investigated by the EPR method. The NO2? 3, NO2 and SO? 4 radicals have been identified. The orientation of NO2? 3 relation to crystallographic axes is determined. In the 77-400 K temperature range the transformations of observable radicals have been studied. The mechanisms of their formation and thermal annealing have been discussed. The symmetry of nitrate ions in sodium sulfate was investigated by diffuse reflectance infrared Fourier transform spectroscopy. At the concentration of NO? 3 up to 5.5 × 1018 g?1 the nitrate ion was supposed to have a planar or pyramidal configuration of the D3h or C3V symmetries. At the concentration of the dopant higher than 5.5 × 1018 g?1 the nitrate ions with the C2V symmetry were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号