首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Evanescent wave-cavity ring-down spectroscopy (EW-CRDS) is employed to characterize micellization of anionic surfactants and the related capability of removing cationic substance off the silica surface. Crystal violet (CV(+)) cationic dye is used as a molecular probe to effectively determine critical hemimicelle concentration (HMC) of surfactants on the surface. The HMC results are 1×10(-2), 4×10(-3), 8×10(-4), and 2.5×10(-4) mol/L for sodium sulfate salts with a carbon-chain length of C-10, C-12, C-14, and C-16, respectively. A stronger hydrophobic interaction results in a less concentration required to undergo micellization. The HMC values on the surface are about half of those in solution. When NaCl solution is added, the electrolyte helps reduce the electrostatic repulsion between the anionic sulfate heads to facilitate the surfactant aggregation, and thus, the subsequent HMC is reduced. Furthermore, the probable phase change for dye-surfactant interactions on the surface at the concentration below HMC is observed, and the desorption rates of CV(+) are measured as a function of concentration and carbon-chain length of surfactants above HMC. Given each surfactant concentration at its respective HMC, the corresponding desorption rates are along the order of C-12相似文献   

2.
The adsorption of alkyl dimethyl benzyl ammonium chloride (ADBAC) on wood was investigated. The changes in zeta potential curves of wood and ADBAC adsorption with increasing ADBAC concentration were highly correlated and showed two different mechanisms for ADBAC adsorption on wood: ion exchange reaction at low concentration and additional aggregation form of adsorption by hydrophobic interaction at high concentration. ADBAC adsorbed at a low solution concentration had high leaching resistance while ADBAC adsorbed into wood at above the critical micelle concentration (CMC) had low leaching resistance. The CMC decreased with addition of Mea, Cu-Mea, and buffer chemicals. The anion, Cl of ADBAC was only adsorbed at solution concentrations above the CMC and was easily leached out. The adsorption isotherm of ADBAC on wood before and after leaching was fit to the Langmuir, BET, and Freundlich isotherm models; the BET and Freundlich models fit the adsorption isotherm well before leaching and the Langmuir and the Freundlich models showed better fits to the adsorption isotherm after leaching. The adsorption capacity of ADBAC into wood by cation exchange did not achieve the cation exchange capacity (CEC) of wood.  相似文献   

3.
The paper capillary permeation adsorption (PCPA) separation of 2,4‐D and silvex herbicides from water by the addition of cetyltrimethylammonium bromide (CTAB) was studied. The effect of pH, CTAB concentration, and the type of PCPA treatment on separatability has been investigated. A nearly 100% separatability was obtained for each of 2,4‐D and silvex at pH values larger than 7 and 5, respectively. The separatability is greater than that without an addition of CTAB. It was confirmed that 2,4‐D and silvex are adsorbed as molecules on the fiber surface that contains ion pairs CTA+COO? formed by the combination of CTA+ cations with the carboxyl groups bonded in the fiber surface.  相似文献   

4.
Ultramicroelectrode (UME) voltammetry is introduced to study the first-step adsorption of dodecyltrimethylammonium bromide (DTAB) solutions on silica wafer surfaces. This method is based on the exchange reaction of the surfactant molecules with hydrogen ions (H+) on the surfaces. In the first-step adsorption process, when a surfactant molecule is adsorbed to the hydroxylated silica surfaces, a H+ will be displaced. Therefore, H+ concentration will change with the adsorption process until it reaches saturation of the first-step adsorption. The molar adsorption amount of DTAB (mol m−2) before critical micelle concentration (CMC) can be calculated from the change in H+ concentration. The following adsorption process at higher surfactant concentrations is dominated by hydrophobic forces. Consequently, the H+ concentrations do not change with the adsorption process any more, which makes the measurement uninfluenced by the following hydrophobic adsorption process. The adsorption isotherms of DTAB on silica wafer surfaces under different pH are measured with this method. It is found that all the adsorption isotherms exhibit asymptote (L) shape and the equilibrium molar adsorption amounts increase with increasing the pH of the solution. These results indicate that H+ not only change the surface charge but also compete with surfactant for adsorption at higher proton concentrations.  相似文献   

5.
In this study a systematic investigation on the adsorption of polyethylene oxide (PEO) onto the surface of silica particles and the viscosity behavior of concentrated dispersions of silica particles with adsorbed PEO has been performed. The variation of shear viscosity with the adsorbed layer density, concentration of free polymer in the solution (depletion forces), polymer molecular weight, and adsorbed layer thickness at different salt concentrations (range of the electrostatic repulsion between particles) is presented and discussed. Adsorption and rheological studies were performed on suspensions of silica particles dispersed in solutions of 10−2 M and 10−4 M NaNO3 containing PEO of molecular weights 7,500 and 18,500 of different concentrations. Adsorption measurements gave evidence of a primary plateau in the adsorption density of 7,500 MW PEO at an electrolyte concentration of 10−2 M NaNO3. Results indicate that the range of the electrostatic repulsion between the suspended particles affects both adsorption density of the polymer onto the surface of the particles and the viscosity behavior of the system. The adsorbed layer thickness was estimated from the values of zeta potential in the presence and absence of the polymer and was found to decrease with decreasing the range of the electrostatic repulsive forces between the particles. Experimental results show that even though there is a direct relation between the viscosity of the suspension and the adsorption density of the polymer onto the surface of the particles, variation of viscosity with adsorption density, equilibrium concentration of the polymer, and range of the electrostatic repulsion cannot be explained just in term of the effective volume fraction of the particles and needs to be further investigated. Received: 15 February 2000/Accepted: 26 June 2000  相似文献   

6.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

7.
Interactions between two negatively charged mica surfaces across aqueous solutions containing various amounts of a 10% charged cationic polyelectrolyte have been studied. It is found that the mica surface charge is neutralized when the polyelectrolyte is adsorbed from a 10–50 ppm aqueous solution. Consequently no electrostatic double-layer force is observed. Instead an attractive force acts between the surfaces in the distance regime 250–100 Å. We suggest that this attraction is caused by bridging. Additional adsorption takes place when the polyelectrolyte concentration is increased to 100 and 300 ppm, and a long-range repulsion develops. This repulsive force is both of electrostatic and steric origin. The polyelectrolyte layer adsorbed from a 50 ppm solution does not desorb when the polyelectrolyte solution is replaced with an aqueous polyelectrolyte-free solution. Injection of sodium dodecyl sulfate (SDS) into the measuring chamber to a concentration of about 0.01 CMC (8.3 × 10−5M) does not affect the adsorbed layers or the interaction forces. However, when the SDS concentration is increased to 0.02 CMC (0.166 mM) the adsorbed layer expands dramatically due to adsorption of SDS to the polyelectrolyte chains. The sudden swelling suggests a cooperative adsorption of SDS to the preadsorbed polyelectrolyte layer and that the critical aggregation concentration between the polyelectrolyte and SDS at the surface is about 0.02 CMC. The flocculation behavior of the polyelectrolyte in solution upon addition of SDS was also examined. It was found that 0.16–0.32 mol SDS/mol charged segments on the polyelectrolyte is enough to make the solution slightly turbid.  相似文献   

8.
《中国化学会会志》2018,65(5):591-596
We demonstrate that silica microspheres can act as a sensitive fluorescent sensor and adsorbent of Ag+ in aqueous media. These thiol‐functionalized silica microspheres are doped with quantum dots (QDs) using organosilane chemistry in a one‐step preparation. Ligand exchange takes place between the thiolated organosilane and acid‐capped QDs, making the doping easy. Ag+ adsorption by the silica microspheres causes the decrease of fluorescence intensity of the QDs. The detection limit for Ag+ is found to be 10 μmol/L. The abundance of thiol groups on the surface of the microspheres could effectively remove Ag+ through strong interaction. When microspheres with a diameter of 1.1 μm are used as the adsorbents, the adsorption capacity for Ag+ reached 102 mg/g. This excellent adsorption ability is due to the abundance of thiol groups that act as the active sites, facilitating the adsorption of the massive metal ions on the surface of the microspheres. Furthermore, the adsorption isotherm data follows the Freundlich model. The structure and content of the silica microspheres were investigated by scanning and high‐resolution transmission electron microscopy, energy dispersive X‐ray spectroscopy, and Raman analysis, and the fluorescence properties were characterized by fluorescence microscopy.  相似文献   

9.
This work examines polyelectrolyte adsorption (exclusively driven by electrostatic attractions) for a model system (DMAEMA, polydimethylaminoethyl methacrylate, adsorbing onto silica) where the adsorbing polycation is more densely charged than the substrate. Variations in the relative charge densities of the polymer and substrate are accomplished by pH, and the polycation is of sufficiently low molecular weight that the adsorbed conformation is generally flat under all conditions examined. We demonstrate, quantitatively, that the charge overcompensation observed on the isotherm plateau can be attributed to the denser positive charge on the adsorbing polycation and that the ultimate coverage obtained corresponds to the adsorption of one oligomer onto each original negative silica charge, when the silica charge is most sparse, at pH 6. This limiting behavior breaks down at higher pHs where the greater silica charge density accommodates single chains adsorbing onto multiple negative sites. As a result of the greater substrate charge density and reduced polycation charge at higher pHs, the extent of charge overcompensation diminishes while the coverage increases on the plateau of the isotherm. Ultimately at the highest pHs, a regime is approached where the coil's excluded surface area, not surface charge, limits the ultimate coverage. In addition to quantifying the crossover from the charge-limiting to the area-limiting behaviors, this paper quantitatively reports adsorption-induced changes in bound counterion density and ionization at the interface, which were generally found to be independent of coverage for this model system.  相似文献   

10.
Crystalline vanadium pentoxide with hierarchical mesopores was synthesized by using a CTAB/BMIC cotemplate (CTAB=cetyltrimethylammonium bromide, BMIC=1‐butyl‐3‐methylimidazolium chloride). The material was fully characterized by SEM, TEM, N2 adsorption–desorption, XRD, XPS, and CV methods. By elaborate adjustment of the template proportions, the distribution and size of the hierarchical pores were tuned successfully. CTAB cationic surfactant contributed more to the larger mesopores, whereas BMIC ionic liquid was beneficial in forming the smaller nanopores. The vanadium‐containing anions combined with CTA+ micelles and BMI+ rings through electrostatic interactions. The CTA+–O(VO)O?–BMI+ entities built up an orderly array, which finally formed the hierarchical mesoporous framework during thermal treatment. The mesoporous vanadium pentoxide directed by the cotemplate of CTAB/BMIC=1:1 showed many orderly crystalline structures and demonstrated a large capacitance (225 F g?1); it is thus a promising material for electrochemical capacitors. Two alternative solutions to the disappearance of capacitance due to insertion of K+ are proposed in view of possible future applications.  相似文献   

11.
Antonio P  Iha K  Suárez-Iha ME 《Talanta》2004,64(2):484-490
The adsorption of DPKSH onto silica gel was investigated, at 25±1 °C and pH 1, 4.7 and 12. For the same DPKSH concentration interval, the minimum required time of contact for adsorption maximum at pH 4.7 was smaller than at pH 1 and the maximum amount of DPKSH adsorbed per gram of silica at pH 1 is smaller than at pH 4.7. At pH 12 the DPKSH adsorption onto silica gel was not significant. The adsorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The maximum amount of solute adsorbed (madsmax) and the adsorption constant, KL, were derived from Langmuir isotherm. The Freundlich constants 1/n and KF related, respectively, to the energetic heterogeneity of adsorption sites and an empirical constant were evaluated. The mean sorption free energy (E) of DPKSH adsorption onto silica gel was calculated from D-R isotherm indicating a physical adsorption mode. Finally, conductimetric titrations showed the silica particle basicity and acidity as 0.002 and 0.3 mmol g−1, respectively.  相似文献   

12.
In this work, molecular dynamics simulations were performed to study the pH-induced structural transitions for a CTAB/p-toluic acid solution. Spherical and cylindrical micelles were obtained for aqueous surfactants at pH 2 and 7, respectively, which agrees well with the experimental observations. The structural properties of two different micelles were analyzed through the density distributions of components and the molecular orientations of CTA+ and toluic acid inside the micelles. It was found that the bonding interactions between CTA+ and toluic in spherical and cylindrical micelles are very different. Almost all the ionized toluic acid (PTA) in the solution at pH 7 was solubilized into the micelles, and it was located in the CTA+ headgroups region. Additionally, the bonding between surfactant CTA+ and PTA was very tight due to the electrostatic interactions. The PTA that penetrated into the micelles effectively screened the electrostatic repulsion among the cationic headgroups, which is considered to be crucial for maintaining the cylindrical micellar shape. As the pH decreased, the carboxyl groups were protonated. The hydration ability of neutral carboxyl groups weakened, resulting in deeper penetration into the micelles. Meanwhile, their bonding interactions with surfactant headgroups also weakened. Accompanied by the strengthen of electrostatic repulsion among the positive headgroups, the cylindrical micelle was broken into spherical micelles. Our work provided an atomic-level insights into the mechanism of pH-induced structural transitions of a CTAB/p-toluic solution, which is expected to be useful for further understanding the aggregate behavior of mixed cationic surfactants and aromatic acids.  相似文献   

13.
The immobilization of a thiophene-based tripodal ligand, with a donor sulfur, on the surface of an epoxide group containing a silica gel phase for the synthesis of a newly functionalized material based on porous silica-bound bi-thiophene tripodal ligand (SGBT) is described. The modified silica surface was characterized by 13C NMR of a solid sample, elemental analysis, and infrared spectra. This new material was also studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and BJH pore sizes, respectively. The target material exhibits good thermal stability as determined by thermogravimetry curves. The synthesized material was utilized in column and batch methods for adsorption of Hg2+, Cd2+, Pb2+, Cu2+, Zn2+, K+, Na+, and Li+, and the material exhibits an affinity only towards toxic heavy metals.  相似文献   

14.
By combining the gauge cell method and lattice model, we study the surface phase transition and adsorption behaviors of surfactants on a solid surface. Two different cases are considered in this work: macrophase transition and adsorption in a single-phase region. For the case of macrophase transition, where two phases coexist, we investigate the shape and size of the critical nuclei and determine the height of the nucleation barrier. It is found that the nucleation depends on the bulk surfactant concentration. Our simulations show that there exist a critical temperature and critical adsorption energy, below which the transition from low-affinity adsorption to the bilayer structure shows the characteristic of a typical first-order phase transition. Such a surface phase transition in the adsorption isotherm is featured by a hysteresis loop. The hysteresis loop becomes narrower at higher temperature and weaker adsorption energy and finally disappears at the critical value. For the case where no macrophase transition occurs, we study the adsorption isotherm and microphase separation in a single-phase region. The simulation results indicate that the adsorption isotherm in adsorption processes is divided into four regions in a log-log plot, being in agreement with experimental observations. In this work, the four regions are called the low-affinity adsorption region, the hemimicelle region, the morphological transition region, and the plateau region. Simulation results reveal that in the second region the adsorbed monomers aggregate and nucleate hemimicelles, while adsorption in the third region is accompanied by morphological transitions.  相似文献   

15.
The riboflavin (RF)—dihydroriboflavin (DRF) system in 0.01 M HClO4 + 0.09 M NaClO4 has been studied on mercury by the single-step chronocoulometric technique. At ?0.040 V/SCE, where RF is still electro-inactive, this substance is adsorbed according to a Langmuir isotherm with an adsorption coefficient KO = 5.2 × 106 1 mol?1, giving rise to a single adsorbed monolayer. At potentials along the plateau of the RF polarographic adsorption prewave, as well as at more negative potentials, DRF is adsorbed with formation of two overlapping monolayers. This behaviour denotes strong attractive vertical interactions between overlapping adsorbed DRF molecules. The progressive shift in the chronocoulometric Q vs. E curve for electro-oxidation of adsorbed DRF towards more positive potentials with an increase in the surface concentration of DRF confirms the strength of these vertical interactions. The simultaneous presence, with formation of a charge-transfer complex, of adsorbed RF and DRF molecules along the plateau of the polarographic RF prewave, as postulated by Tedoradze and co-workers [21,22] is excluded.  相似文献   

16.
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (≤10 μg ml−1, for lysozyme ≤200 μg ml−1) and dependence of surface wettability, as well as adsorption kinetics and elutability of adsorbed films by buffer and sodium dodecyl sulphate (SDS) solutions were investigated. Results showed that the amounts adsorbed decreased in the order lactoferrin  lactoperoxidase > lysozyme  histatin 5. On hydrophilic silica, the adsorption was most likely driven by electrostatic interactions, which resulted in adsorbed amounts of lactoferrin that indicated the formation of a monolayer with both side-on and end-on adsorbed molecules. For lactoperoxidase the adsorbed amounts were somewhat higher than an end-on monolayer, lysozyme adsorption showed amounts corresponding to a side-on monolayer, and histatin 5 displayed adsorbed amounts in the range of a side-on monolayer. On hydrophobized substrata, the adsorption was also mediated by hydrophobic interactions, which resulted in lower adsorbed amounts of lactoferrin and lactoperoxidase; closer to side-on monolayer coverage. For both lysozyme and histatin 5 the adsorbed amounts were the same as on the hydrophilic silica. The investigated proteins exhibited fast adsorption kinetics, and the initial kinetics indicated mass transport controlled behaviour at low concentrations on both types of substrates. Buffer rinsing and SDS elution indicated that the proteins in general were more tightly bound to the hydrophobized surface compared to hydrophilic silica. Overall, the surface activity of the investigated proteins implicates their importance in the salivary film formation.  相似文献   

17.
Mano N  Kuhn A 《Talanta》2005,66(1):21-27
We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD+. In the next step we use the intrinsic affinity of the NAD+ monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca2+/NAD+/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.  相似文献   

18.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

19.
New data relating to the kinetics and adsorption isotherms of asphaltene in consolidated sandstone core samples are reported. The data were obtained from the measurements of electrokinetics of consolidated sandstone core samples in asphaltene/toluene solutions and petroleum oils. The numerical reduction in the (negative) zeta potential of the sandstone samples were attributed to the adsorption of positively charged molecules of asphaltenes. The hydrodynamics thickness δ of adsorption of asphaltene were followed by monitoring the pressure increase that occurred as the adsorbed layer restricted the rock pores and applying Poiseuille's equation. The flow rates indicated a plateau of asphaltene adsorption at a pore blocking thickness of about δ/r = 0.3, which was also the point at which the streaming current reached a plateau. After increasing to about 30% of the pore radius, the adsorbed layer thickness δ stopped growing either with time or with concentration of asphaltene in the flowing liquid. Alternative hypotheses involving asphaltene adsorption isotherms have been investigated. A theoretical treatment advanced describing particle adsorption in the same terms as molecular adsorption and the Langmuir isotherm, with the free energy of asphaltene adsorption on the rock surface (modeled on silica) calculated on the basis of van der Waals attraction. Acceptable agreement was obtained with the electrokinetic measurements.  相似文献   

20.
CMC型高分子表面活性剂在固/液界面上的吸附   总被引:11,自引:1,他引:11  
在润湿、乳化、洗涤、分散等应用领域中,表面活性剂分子在界面上的吸附状态对性能有重要影响.另一方面,在化学驱油过程中,表面活性剂分子在氧化物矿物上的吸附是引起表面活性剂损失的主要原因,表面活性剂的损耗量大,将降低采收率及经济效益[1].高分子表面活性剂作为一种多功能的新型表面活性剂在许多领域有广阔的应用前景,但对其性能研究尚处于起步阶段,特别是结构复杂的高分子双亲性共聚物,在吸附、乳化等方面研究尚少报导.羧甲基纤维素系列高分子表面活性剂是采用独特的超声波辐照技术合成的嵌段型共聚物,具有优良的表/界面活性[2],可望用…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号