首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics of the oxidation of functionalized organic compounds of atmospheric relevance by the hydroxyl radical (OH) was measured in the aqueous phase. Competition kinetics, using the thiocyanate anion (SCN?) as competitor, was applied using both a laser flash photolysis long path absorption (LP‐LPA) setup and a Teflon AF waveguide photolysis (WP) system. Both experiments were intercompared and validated by measuring the rate coefficients for the reaction between OH and acetone where values of k1 = (1.8 ± 0.4) × 108 M?1 s?1 were obtained with the WP system, which agrees very well with the rate constant of k1 = (2.1 ± 0.6) × 108 M?1 s?1 determined before by LP‐LPLA [1]. The following temperature dependencies of the rate constants (M?1 s?1) for the reactions of OH with ketones, dicarboxylic acids, and unsaturated compounds were obtained in Arrhenius' form: Reaction of OH with: methylisobutyl ketone (MIBK): k2 = (1.0 ± 0.1) × 1012

  相似文献   


2.
The temperature-jump method has been used to determine the nickel(II)- and cobalt(II)-arginine complexation kinetics. In the pH range studied, the neutral form of the ligand, HL, is the attacking, as well as the complexed, ligand species. The reactions reported on are of the type where n = 1, 2, 3 and M is Ni or Co. At 25° and ionic strength 0.1M the association rate constants are: for nickel(II) k1 = 2.3 × 103(±20%), k2 = 2.4 × 104(±20%), k3 = 3.5 × 104(±40%) M?1 sec?1; for cobalt(II) k1 = 1.5 × 105(±20%), k2 = 8.7 × 105(±20%), k3 = 2.0 × 105(±40%) M?1 sec?1. Arginine binds to metal ions less well than homologous chelating agents due to the electrostatic repulsion arising from the positively charged terminus of the zwitterion. Kinetically, the effect appears in the association rate constants with nickel reactions more strongly influenced than cobalt.  相似文献   

3.
The kinetics of the reactions have been studied in a discharge flow system under pseudo-first-order conditions. The OH concentration was monitored by laser induced fluorescence and helium was used as the carrier gas. Values of k1 = (8.1 ± 1.7) × 10?13, k2 = (1.31 ± 0.26) × 10?11, k3 = (2.6 ± 0.5) × 10?11, and k4 = (2.5 ± 0.4) × 10?11 cm3 molecule?1 s?1, at 298 K and 1 torr total pressure, were obtained. To validate the newly constructed system the rate constant for the reaction was determined in a similar manner. The value of k5 = (6.7 ± 0.9) × 10?12 cm3 molecule?1 s?1 at 298 K and 1 torr total pressure is in very good agreement with other literature values. The mechanisms for the atmospheric degradation of these compounds have been constructed to allow their incorporation in a photochemical trajectory computer model, to assess their impact on photochemical ozone creation in the troposphere. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Reactions of 2,4,6-tri-t-butylphenoxyl (TBP) with cumene hydroperoxide (ROOH), cumylperoxyl radicals (RO2), and molecular oxygen in benzene solution have been investigated kinetically by the ESR method. The rate constant of the reaction TBP + ROOH has been estimated in the temperature range 27°-75°C: log10(k?7/M?1sec?1) = (7.1 ± 0.4) - (10.9 ± 0.6 kcal mole?1)/θ The ratio of the rate constants of reactions TBPH + RO2 products has been determined from the experimental dependence of the rate constant of reaction TBP with ROOH on [TBPH]0/[TBP]0. Putting k7 = 4.0 × 103M?1sec?1, we obtain k8 = (2.0 ± 0.2) × 108M?1sec?1 at 30°C. The reaction of TBP with O2 obeys the kinetic law ?d[TBP]/dt = k′[O2][TBP]2. This is in accordance with scheme TBP + O2 ← TBP ?O2 [I]; TBP ?O2 + TBP · products, log10 (k′/M?2sec?1) = (?14.5 ± 0.9) + (27.2 ± 1.4)/θ at 66°?78°C, where ° = 2.303RT.  相似文献   

5.
The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997.  相似文献   

6.
The production of ClOO and ClO radicals following the flash photolysis of chlorine + oxygen mixtures has been studied. For the mechanism the following kinetic parameters were measured: k3K = 1.3 × 1010 l2/mol2·sec; k2/k3 = 17; and k3/?(ClOO; 250 nm) = 9.7 × 105 cm/sec. Then k3 = 5.9 × 109 l/mol·sec, k2 = 1.0 × 1011 l/mol·sec, and ?(ClOO; 250 nm) = 6.1 × 103 l/mol·cm. From limits established for the equilibrium constant K, ΔH°f (ClOO) = 94 ± 2 kJ/mol.  相似文献   

7.
An analysis of the former works devoted to the reactions of I(III) in acidic nonbuffered solutions gives new thermodynamic and kinetic information. At low iodide concentrations, the rate law of the reaction IO + I? + 2H+ ? IO2H + IOH is k+B [IO][I?][H+]2k?B [IO2H][IOH] with k+B = 4.5 × 103 M?3s?1 and k?B = 240 M?1s?1 at 25°C and zero ionic strength. The rate law of the reaction IO2H + I? + H+ ? 2IOH is k+C [IO2H][I?][H+] – k?C [IOH]2 with k+C = 1.9 × 1010 M?2s?1 and k?C = 25 M?1s?1. These values lead to a Gibbs free energy of IO2H formation of ?95 kJ mol?1. The pKa of iodous acid should be about 6, leading to a Gibbs free energy of IO formation of about ?61 kJ mol?1. Estimations of the four rate constants at 50°C give, respectively, 1.2 × 104 M?3s?1, 590 M?1s?1, 2 × 109 M?2s?1, and 20 M?1 s?1. Mechanisms of these reactions involving the protonation IO2H + H+ ? IO2H and an explanation of the decrease of the last two rate constants when the temperature increases, are proposed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 647–652, 2008  相似文献   

8.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

9.
Polymerizations of ethylene by the MgCl2/ethylbenzoate/p-cresol/AlEt3 TiCl4-AlEt3/methyl-p-toluate (CW-catalyst) have been studied. The initially formed active site concentration, [Ti] has a maximum value of 50% of total titanium at 50°C and lower values at other temperatures. The Ti decays rapidly to Ti sites with conc. ca. 10 mol %/mol Ti. The rate constants for four chain transfer processes have been obtained at 50°C: for transfer with AlEt3, k = 2.1 × 10?4 s?1 and k = 4.8 × 10?4 s?1; for transfer with monomer, k = 3.6 × 10?3 (M s)?1 and K = 8.3 × 10?3 (M s)?1; for β-hydride transfer, k = 7.2 × 10?4 s?1 and k = 4.9 × 10?4 s?1; and transfer with hydrogen, k = 4.0 × 10?3 torr1/2 s? and k = 5.1 × 10?3 torr1/2 s?1. The rate constants for the termination assisted by hydrogen is k = 1.7 (M1/2 torr1/2 S)?1. If monomer is assisting termination as was observed for propylene polymerization, then k = 7.8 (M3/2 s)?1. Values of all the rate constants can be higher or lower at other temperatures. Detailed comparisons were made with the results of propylene polymerizations. There are more than four times as many Ti active sites for ethylene polymerization than there are for stereospecific polymerization of propylene; the difference is more than a factor of two for the Ti sites. Certain rate constants are nearly the same for both monomers while others are markedly different. Some of the differences can be explained by stereoelectronic effects.  相似文献   

10.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

11.
Rate constants for the reaction O(3P) + SO2 + M have been determined over the temperature range of 299°–440°K, using a flash photolysis–NO2 chemiluminescence technique. For M?Ar, the Arrhenius expression was obtained. At room temperature k2Ar = (1.05 ± 0.21) × 10?33 cm6/molec2·sec. In addition, the rate constants k2 = (1.37 + 0.27) × 10?33 cm6/molec2·sec, k2 = (9.5 ± 3.0) ± 10?33 cm6/molec2·sec, k3 = (1.1 ± 0.2) ± 10?31 cm6/molec2·sec, and k3 = (2.6 ? 0.9) ± 10?31 cm6/molec2·sec were obtained at room temperature where k3M is the rate constant for the reaction O + NO + M → NO2 + M. The rate data are compared and discussed with literature values.  相似文献   

12.
The complexation of 1-methyl-2-hydroxymethyl-imidazole (L) with Cu(I) and Cu(II) has been studied in aqueous acetonitrile (AN). Cu(I) forms three complexes, Cu(AN)L+, CuL2+, and Cu(AN)H?1L, with stability constants logK(Cu(AN)+ + L ? Cu(AN)L+) = 4.60 ± 0.02, logβ2 = 11.31 ± 0.04, and logK(Cu(AN)H?1L+H+ ? Cu(AN)L+) = 10.43 ± 0.08 in 0.15M AN. The main species for Cu(II) are CuL2+, CuH?1L+, CuH?1L2+, and CuH?2L2. The autoxidation of CuL2+ was followed with an oxygen sensor and spectrophotometrically. Competition between the formation of superoxide in a one-electron reduction of O2 and a path leading to H2O2 via binuclear (CuL2)2O was inferred from the rate law with ka = (2.31 ± 0.12) · 104M ?2S ?1, kb = (1.0 ± 0.2) · 103M ?1, kc = (2.85 ± 0.07) · 102M ?2S ?1, kd = 3.89 ± 0.14M ?1S ?1, ke = 0.112 ± 0.004, kf = (2.06 ± 0.24) · 10?10M S ?1, kg = (1.35 ± 0.07) · 10?7 S ?1, and kh = (6.8 ± 1.4) · 10?7M ?1 S ?1.  相似文献   

13.
i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

14.
When Cl atoms react with CHClCHCl in the presence of O2 at 31°C, a long-chain oxidation occurs. The products are the geometrical isomer of the starting olefin and CHClO, HCl, CO, and CCl2O. The quantum yields of the oxygen-containing products are the same with both isomers and are Φ{CHClO} = 30, Φ{CO} = 11.7, and Φ{CCl2O} = 1.29. The chlorine atom adds to the olefin and is followed by O2 addition. The reaction then proceeds with k6a/k6b = 19 and k7a/k7 ~ 0.5, where k7k7a + k7b. The CCl2H radical oxidizes to regenerate the chain carrier. O(3P) reacts with CHClCHCl at 25°C with a rate coefficient of 6.6 × 108 M?1 sec?1 for trans-CHClCHCl and 2.8 × 108 M?1 sec?1 for cis-CHClCHCl. The reaction channels are with k1a/k1 = 0.23 and 0.28, respectively, for the cis and trans compounds. Reaction (1b) occurs < 4% of the time. Reaction (1c) leads to polymer production and presumably, via redissociation, to the geometrical isomer of the starting olefin. In the presence of O2 the same long-chain oxidation is observed as in the chlorine-atom initiated oxidation. The chain-initiating step is   相似文献   

15.
The pyrolysis of n-propyl nitrate and tert-butyl nitrite at very low pressures (VLPP technique) is reported. For the reaction the high-pressure rate expression at 300°K, log k1 (sec?1) = 16.5 ? 40.0 kcal/mole/2.3 RT, is derived. The reaction was studied and the high-pressure parameters at 300°K are log k2(sec?1) = 15.8 ? 39.3 kcal/mole/2.3 RT. From ΔS1,?10 and ΔS2,?20 and the assumption E?1 and E?2 ? 0, we derive log k?1(M?1·sec?1) (300°K) = 9.5 and log k?2 (M?1·sec?1) (300°K) = 9.8. In contrast, the pyrolysis of methyl nitrite and methyl d3 nitrite afford NO and HNO and DNO, respectively, in what appears to be a heterogeneous process. The values of k?1 and k?2 in conjunction with independent measurements imply a value at 300°K for of 3.5 × 105 M?1·sec?1, which is two orders of magnitude greater than currently accepted values. In the high-pressure static pyrolysis of dimethyl peroxide in the presence of NO2, the yield of methyl nitrate indicates that the combination of methoxy radicals with NO2 is in the high-pressure limit at atmospheric pressure.  相似文献   

16.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

17.
18.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

19.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

20.
The kinetics of the reaction of OH radicals with methyl, n-propyl, and n-butyl nitrite have been studied in a discharge flow system under pseudo first-order conditions. The OH radicals were generated by the reaction of H atoms with NO2 and the concentration of OH; monitored by resonance fluorescence, was followed as a function of time in an excess of each nitrite. Values of k(CH3ONO) = (0.6 ± 0.09) × 109 dm3 mol?1 s?1 k(n – C3H7ONO) = (1.39 ± 0.20) × 109 dm3 mol?1 s?1, and k(n – C4H9ONO) = (2.89 ± 0.43) × 109 dm3 mol?1 s?1 at 295 K were obtained. These results agree with previous relative rate measurements from this laboratory but the value for k (CH3ONO) is a factor of 7 greater than the value obtained by relative rate measurements elsewhere using a different OH source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号