首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Light-induced chemical reactions exist in nature, regulating many important cellular and organismal functions, e.g., photosensing in prokaryotes and vision formation in mammals. Here, we report the genetic incorporation of a photoreactive unnatural amino acid, p-(2-tetrazole)phenylalanine (p-Tpa), into myoglobin site-specifically in E. coli by evolving an orthogonal tRNA/aminoacyl-tRNA synthetase pair and the use of p-Tpa as a bioorthogonal chemical "handle" for fluorescent labeling of p-Tpa-encoded myoglobin via the photoclick reaction. Moreover, we elucidated the structural basis for the biosynthetic incorporation of p-Tpa into proteins by solving the X-ray structure of p-Tpa-specific aminoacyl-tRNA synthetase in complex with p-Tpa. The genetic encoding of this photoreactive amino acid should make it possible in the future to photoregulate protein function in living systems.  相似文献   

2.
A novel metabolite from Aspergillus terreus, named terreinol, was isolated and its biosynthetic origin was determined by NMR based on the incorporation of [1-13C]-d-glucose. The labeling pattern indicated a predominant polyketide biosynthetic origin for this metabolite.  相似文献   

3.
The biosynthesis of the anti-cancer drug taxol (paclitaxel) has required the collaborative efforts of several research groups to tackle the synthesis and labeling of putative biosynthetic intermediates, in concert with the identification, cloning and functional expression of the biosynthetic genes responsible for the construction of this complex natural product. Based on a combination of precursor labeling and incorporation experiments, and metabolite isolation from Taxus spp., a picture of the complex matrix of pathway oxygenation reactions following formation of the first committed intermediate, taxa-4(5),11(12)-diene, is beginning to emerge. An overview of the current state of knowledge on the early-stages of taxol biosynthesis is presented.  相似文献   

4.
We present a novel phenotypic readout using inducible, biosynthetic nanoscaffolds to directly visualize dynamic molecular interactions within living cells at the single-cell level with high sensitivity and selectivity. Labeled ferritin is used to form biological nanoparticles inside cells. Specific supramolecular assembly of ferritin-derived nanoparticles induces highly clustered nanoscaffolds. These inducible biosynthetic nanoscaffolds are used as the artificial recruitment/redistribution platform for monitoring interactions of a small molecule with its target protein(s) inside living cells.  相似文献   

5.
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.  相似文献   

6.
Thiamin-pyrophosphate is an essential cofactor in all living systems. The biosynthesis of both the thiazole and the pyrimidine moieties of this cofactor involves new biosynthetic chemistry. Thiazole-phosphate synthase (ThiG) catalyses the formation of the thiazole moiety of thiamin-pyrophosphate from 1-deoxy-D-xylulose-5-phosphate (DXP), dehydroglycine and the sulfur carrier protein (ThiS), modified on its carboxy terminus as a thiocarboxylate (ThiS-thiocarboxylate). Thiazole biosynthesis is initiated by the formation of a ThiG/DXP imine, which then tautomerizes to an amino-ketone. In this paper we study the sulfur transfer from ThiS-thiocarboxylate to this amino-ketone and trap a new thioenolate intermediate. Surprisingly, thiazole formation results in the replacement of the ThiS-thiocarboxylate sulfur with an oxygen from DXP and not from the buffer, as shown by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) using (18)O labeling of the 13C-, 15N-depleted protein. These observations further clarify the mechanism of the complex thiazole biosynthesis in bacteria.  相似文献   

7.
The ability to modify target "native" (endogenous) proteins selectively in living cells with synthetic molecules should provide powerful tools for chemical biology. To this end, we recently developed a novel protein labeling technique termed ligand-directed tosyl (LDT) chemistry. This method uses labeling reagents in which a protein ligand and a synthetic probe are connected by a tosylate ester group. We previously demonstrated its applicability to the selective chemical labeling of several native proteins in living cells and mice. However, many fundamental features of this chemistry remain to be studied. In this work, we investigated the relationship between the LDT reagent structure and labeling properties by using native FK506-binding protein 12 (FKBP12) as a target protein. In vitro experiments revealed that the length and rigidity of the spacer structure linking the protein ligand and the tosylate group have significant effects on the overall labeling yield and labeling site. In addition to histidine, which we reported previously, tyrosine and glutamate residues were identified as amino acids that are modified by LDT-mediated labeling. Through the screening of various spacer structures, piperazine was found to be optimal for FKBP12 labeling in terms of labeling efficiency and site specificity. Using a piperazine-based LDT reagent containing a photoreactive probe, we successfully demonstrated the labeling and UV-induced covalent cross-linking of FKBP12 and its interacting proteins in vitro and in living cells. This study not only furthers our understanding of the basic reaction properties of LDT chemistry but also extends the applicability of this method to the investigation of biological processes in mammalian cells.  相似文献   

8.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

9.
Chen H  Harrison PH 《Organic letters》2004,6(22):4033-4036
[reaction: see text] Isotope labeling studies show that malonate, not acetate, furnishes all four C(2) units in the acyltetramic acid streptolydigin. The results are compared with those for pramanicin, and implications for the biosynthetic pathway are discussed.  相似文献   

10.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

11.
The methodology for conventional radiofluorography of two-dimensional gels, followed by rehydration of the gel and subsequent silver staining, is described. The image obtained by radiofluorography is referred to as biosynthetic image, and the image obtained by silver staining as constitutive image. Since the two images are already in close register (the same gel), reliable identification of polypeptides by the two different assays is possible, and the comparison provides valuable information on the catabolism of each entity. The utility of this procedure is illustrated in experiments involving a labeling with L-[35S]methionine of an entire mouse. Both serum and tissue samples were analyzed by two-dimensional gel electrophoresis with the aim of determining several categories of polypeptides in terms of their biosynthetic rates and their composition.  相似文献   

12.
Huang YQ  Liu JQ  Gong H  Yang J  Li Y  Feng YQ 《The Analyst》2011,136(7):1515-1522
In order to quantitatively study the jasmonate biosynthetic pathway, we chemically synthesized a pair of isotope mass probes and established a labeling protocol. The pair of mass probes used in our work were ω-bromoacetonylpyridinium bromide (BPB) and d(5)-ω-bromoacetonylpyridinium bromide (d(5)-BPB), which contain carboxylic acid reactive groups, isotopically labeled groups and permanent positive charges. High performance liquid chromatography (HPLC) and electrospray ionization quadrupole-time of flight mass spectrometry (ESI-QTOF-MS) were used for the detection of labeled standard mixtures and plant samples. In comparison to negative mode electrospray ionization detection of unlabeled analytes, the ESI signal of reverse charge labeled compounds was shown to improve by 20- to 80-fold. Accurate relative quantification was achieved as no isotopic effects of the different isotope labeled phytohormones during RP/SCX mixed-mode liquid chromatographic separation were observed. A data analysis method was established for analyzing metabolic pathways using our labeling strategy. We then applied our method and examined the jasmonate biosynthetic pathway of rice under salt stress and the premature senescence mutant. Here we found that under salt stress conditions, rice showed up-regulation in (13S)-hydroperoxyoctadecatrienoic acid (HOPT), cis-(+)-12-oxophytodienoic acid (OPDA), 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid (OPC-8) and jasmonoyl-valine (JA-Val) levels, while α-linolenic acid (LA) and jasmonic acid (JA) showed down-regulation, and three components (HPOT, OPC-8 and JA-Val) were accumulated. The premature senescence mutant showed up-regulation in all major components of the jasmonate biosynthetic pathway with the exception of LA, and an accumulation of HPOT, OPC-6 and JA-Val. This study demonstrates that our chemical stable isotope labeling strategy can be used as a powerful tool for metabolic pathway analysis of phytohormones in plants.  相似文献   

13.
BACKGROUND: The non-proteinogenic amino acid p-hydroxyphenylglycine is a crucial component of certain peptidic natural products synthesized by a non-ribosomal peptide synthetase mechanism. In particular, for the vancomycin group of antibiotics p-hydroxyphenylglycine plays a structural role in formation of the rigid conformation of the central heptapeptide aglycone in addition to being the site of glycosylation. Initial labeling studies suggested tyrosine was a precursor of p-hydroxyphenylglycine but the specific steps in p-hydroxyphenylglycine biosynthesis remained unknown. Recently, the sequencing of the chloroeremomycin gene cluster from Amycolatopsis orientalis gave new insights into the biosynthetic pathway and allowed for the prediction of a four enzyme pathway leading to L-p-hydroxyphenylglycine from the common metabolite prephenate. RESULTS: We have characterized three of the four proposed enzymes of the L-p-hydroxyphenylglycine biosynthetic pathway. The three enzymes are encoded by open reading frames (ORFs) 21, 22 and 17 (ORF21: [PCZA361.1, O52791, CAA11761]; ORF22: [PCZA361. 2, O52792, CAA11762]; ORF17: [PCZA361.25, O52815, CAA11790]), of the chloroeremomycin biosynthetic gene cluster and we show they have p-hydroxymandelate synthase, p-hydroxymandelate oxidase and L-p-hydroxyphenylglycine transaminase activities, respectively. CONCLUSIONS: The L-p-hydroxyphenylglycine biosynthetic pathway shown here is proposed to be the paradigm for how this non-proteinogenic amino acid is synthesized by microorganisms incorporating it into peptidic natural products. This conclusion is supported by the finding of homologs for the four L-p-hydroxyphenylpyruvate biosynthetic enzymes in four organisms known to synthesize peptidic natural products that contain p-hydroxyphenylglycine. Three of the enzymes are proposed to function in a cyclic manner in vivo with L-tyrosine being both the amino donor for L-p-hydroxyphenylglycine and a source of p-hydroxyphenylpyruvate, an intermediate in the biosynthetic pathway.  相似文献   

14.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

15.
In this review, we described the design strategies of SNAP-tag fl uorogenic probes with turn-on fl uorescence responses, which minimized the fl uorescence background and allowed for direct imaging in living cells without wash-out steps. These probes can apply in real-time analysis of protein localization, dynamics, and protein– protein interactions in living cells. Furthermore, the excellent fl uorescent properties made it possible to apply some of the probes in super-resolution fl uorescence imaging.  相似文献   

16.
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.  相似文献   

17.
The specific and covalent labeling of fusion proteins with synthetic molecules opens up new ways to study protein function in the living cell. Here we present a novel method that allows for the specific and exclusive extracellular labeling of proteins on the surfaces of live cells with a large variety of synthetic molecules including fluorophores, protein ligands, or quantum dots. The approach is based on the specific labeling of fusion proteins of acyl carrier protein with synthetic molecules through post-translational modification catalyzed by phosphopantetheine transferase. The specificity and versatility of the labeling should allow it to become an important tool for studying and manipulating cell surface proteins and for complementing existing approaches in cell surface engineering.  相似文献   

18.
Several medically and agriculturally important natural products contain pyrrole moieties. Precursor labeling studies of some of these natural products have shown that L-proline can serve as the biosynthetic precursor for these moieties, including those found in coumermycin A(1), pyoluteorin, and one of the pyrroles of undecylprodigiosin. This suggests a novel mechanism for pyrrole biosynthesis. The biosynthetic gene clusters for these three natural products each encode proteins homologous to adenylation (A) and peptidyl carrier protein (PCP) domains of nonribosomal peptide synthetases in addition to novel acyl-CoA dehydrogenases. Here we show that the three proteins from the undecylprodigiosin and pyoluteorin biosynthetic pathways are sufficient for the conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP. This establishes a novel mechanism for pyrrole biosynthesis and extends the hypothesis that organisms use A/PCP pairs to partition an amino acid into secondary metabolism.  相似文献   

19.
A protein labeling approach is employed for the localization of a zinc-responsive fluorescent probe in the mitochondria and in the Golgi apparatus of living cells. ZP1, a zinc sensor of the Zinpyr family, was functionalized with a benzylguanine moiety and thus converted into a substrate (ZP1BG) for the human DNA repair enzyme alkylguaninetransferase (AGT or SNAP-Tag). The labeling reaction of purified glutathione S-transferase tagged AGT with ZP1BG and the zinc response of the resulting protein-bound sensor were confirmed in vitro. The new detection system, which combines a protein labeling methodology with a zinc fluorescent sensor, was tested in live HeLa cells expressing AGT in specific locations. The enzyme was genetically fused to site-directing proteins that anchor the probe onto targeted organelles. Localization of the zinc sensors in the Golgi apparatus and in the mitochondria was demonstrated by fluorescence microscopy. The protein-bound fluorescence detection system is zinc-responsive in living cells.  相似文献   

20.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号