首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semiempirical MNDO and MINDO/3 methods are used to study the various tautomeric forms of histamine, 2-methylhistamine, and 4-methylhistamine. Comparisons of the optimized structures and tautomerization energies are made with values obtained from ab initio Hartree-Fock calculations using the 3-21G and STO-3G basis sets. Based on these results and previous comparisons of STO-3G results with x-ray structures, the present results indicate that while there are some differences in the values of the structural parameters, the changes in structure upon tautomerization and/or protonation are very similar. Further analysis of the MNDO and MINDO/3 structures by means of their utilization in 3-21G and STO-3G calculations indicates that either of these semiempirical methods provides reliable values for the structural parameters. Both methods give good qualitative agreement with the ab initio calculations for the relative energies of the various tautomers in the three compounds. In these studies the MNDO method appears to give better quantitative agreement with the 3-21G and STO-3G results than the MINDO/3 method.  相似文献   

2.
Ab initio calculations at the STO-3G level were performed on almost all of the possible isomers for the entire series of closo-carboranes, C2Bn-2Hn, 5 ? n ? 12. Geometry optimizations using the gradient method were also included in all calculations. We report here the relative energies obtained for the various isomers as well as the optimized structures. These calculations confirm our previous predictions of relative stabilities obtained from topological charge stabilization. Comparisons of our structures with those from experimental data provide us with a measure of reliability for bond distances obtained using ab initio SCF MO calculations at the STO-3G level. Results from the geometry optimization substantiated the experimentally known fluxional behavior of the 8 and 11 atom polyhedra.  相似文献   

3.
A new approach for the calculation of electrostatic potential derived atomic charges is presented. Based on molecular orbital calculations in the PRDDO/M approximation, the new parametrized electrostatic potential (PESP) method is parametrized against ab initio MP2/6-31G** calculations. For a data set of 820 atoms in 145 molecules containing H, C, N. O, F, P, S, Cl, and Br (including hypervalent species), the PESP method achieves a mean absolute error of 0.037 e with a correlation coefficient of 0.990. Unlike other approximate approaches, no scaling factor is required to improve the agreement between PESP charges and the underlying ab initio results. PESP calculations are an order of magnitude faster than the simplest ab initio calculation (STO-3G) on large molecules while achieving a level of accuracy that rivals much more elaborate ab initio methods. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 955–969, 1997  相似文献   

4.
Possible refinements of semiempirical methods include the use of larger basis sets and of correlated wave functions. These possibilities are investigated in semiempirical NDDO SCF calculations with the STO-3G and 4-31G basis sets, and in correlated calculations at the STO-3G level. The present approach is characterized by the analytical evaluation of all one-center terms and two-electron integrals, and the semiempirical adjustment of the remaining one-electron integrals and the nuclear repulsions. The NDDO SCF results tend to reproduce the correspondingab initio results more closely than experimental data, even if they are parametrized with respect to experiment. The explicit inclusion of electron correlation at the STO-3G level improves the calculated results only slightly.  相似文献   

5.
Semiempirical CNDO, AM1, PM3 and ab initio HF/STO-3G, HF/3-21G(d), and HF/6-31(d) methods were employed in the geometry optimization of the phenothiazine and the corresponding radical cation. The results obtained from the PM3 performances were as good as those from the ab initio calculations in the structure optimization of both phenothiazine and phenothiazine radical cation. The PM3 method was used to optimize the structures of a series of N-substituted phenothiazine derivatives and their radical cations. The PM3-optimized results were then analyzed with the ab initio calculation at the 6-311G(d,p) level, which yielded the total energy, frontier molecular orbitals, dipole moments, and charge and spin density distributions of the phenothiazine derivatives and their radical cations.  相似文献   

6.
Ab initio molecular orbital calculations were used to study hydrogen bonding interactions and interatomic distances of a number of hydrogen bonded complexes that are germane to biomolecular structure and function. The calculations were carried out at the STO-3G, 3-21G, 6-31G*, and MP2/6-31G* levels (geometries were fully optimized at each level). For anionic species, 6-31 + G* and MP2/6-31 + G* were also used. In some cases, more sophisticated calculations were also carried out. Whenever possible, the corresponding enthalpy, entropy, and free energy of complexation were calculated. The agreement with the limited quantity of experimental data is good. For comparison, we also carried out semiempirical molecular orbital calculations. In general, AM1 and PM3 give lower interaction enthalpies than the best ab initio results. With regard to structural results, AM1 tends to favor bifurcated structures for O? H-O and N? HO types of hydrogen bonds, but not for hydrogen bonds involving O-H? S and S-H? O, where the usual hydrogen bond patterns are observed. Overall, AM1 geometries are in general in poor agreement with ab initio structural results. On the other hand, PM3 gives geometries similar to the ab initio ones. Hence, from the structural point of view PM3 does show some improvement over AM1. Finally, insights into the formation of cyclic or open formate–water hydrogen bonded complexes are presented. © 1992 by John Wiley & Sons, Inc.  相似文献   

7.
Summary Z-transition state calculations based on the Levy equation suggest that the isoelectronic changes in energy of quark atoms,Q, (ordinary atoms with extra nuclear charge in units of ±1/3 and/or ±2/3) can be expressed quantitatively in terms of the electrostatic potential at the nucleus of an isoelectronic ordinary atom. Numerical tests within the local density functional theory are presented for the quark atoms of Li-F. Theab initio MO (molecular orbital) calculations using STO-5G basis on the C2 molecule and its quark derivatives lead to similar conclusions.  相似文献   

8.
The geometries of molecules H_3AXAH_3(X=O,S,Se and A=C,Si)have been optimizedusing STO-3G ab initio calculations and gradient method and the results are in good agreement withreported experimental values.From the STO-3G optimized geometries,we have also calculated theelectronic structures of these molecules using 4-31G and 6-31G basis sets to obtain the MO energies.atomic net charges and dipole moments.The ionization potentials calculated by 6-31G basis set are ingood agreement with experimental values.  相似文献   

9.
Donor-acceptor pairs form EDA complexes that exist as conformational isomers exhibiting different ground-state and photochemical properties. We have sought a rapid, general, and accurate quantum mechanical computational method to generate potential energy surfaces that are representative of the donor-acceptor intermolecular interactions at the self-consistent field (SCF) level. The semiempirical molecular orbital (MO) method MNDO has been compared to ab initio methods to assess its behavior with respect to energy, dipole moment and ionization potential shifts. MNDO correctly distinguishes between repulsive and bound EDA complex states at the SCF level and produces potential curves that are smooth and free of spurious minima or cusps. MNDO curves are systematically more repulsive than those for ab initio STO-3G calculations; calculated interaction energies exhibit a mean absolute deviation of 2.90 kcal/mol. MNDO appears to provide a reliable qualitative estimate of the nondispersion portion of the interaction energy. Limitations and errors arising from minimal basis sets, single determinants, and neglect of dispersion are discussed.  相似文献   

10.
Systematic MRD-CI calculations using the AM1 Hamiltonian have been carried out for two polyenes and eight aromatic hydrocarbons ranging from benzene to ovalene (C32H14). Twenty singlet–singlet excitation energies in these compounds were calculated and compared with experimental data and ab initio STO-3G results. On an absolute scale, the AM1/MRD-CI approach underestimates the excitation energies to states with dominant covalent character by an average of 1.1 eV, whereas the errors for ionic states are between ?1.0 and 1.0 eV. The STO-3G calculated data are much too high by ≈ 1 eV and ≈ 5 eV, respectively. The inclusion of σπ-correlation effects through second-order Epstein–Nesbet perturbation theory combined with the use of localized orbitals leads to a significant improvement of the ab initio calculated state energies. In an analogous AM1 treatment, negligible corrections for the σπ correlations are found, which is attributed to the implicit account in the parameters and approximation of the semiempirical Hamiltonian. The possible error sources of the calculational methods are discussed. © 1994 by John Wiley & Sons, Inc.  相似文献   

11.
Quantum mechanical (ab initio and semiempirical) and force field calculations are reported for representative torsion potentials in several tetrahydropyran derivatives. The overall agreement between the various methods is quite good except that the AMBER torsion profiles are sensitive to the choice of atomic point charges. Using electrostatic potential (ESP) derived atomic point charges determined with the STO-3G basis set we find that AMBER is able to match the best quantum mechanical results quite well. However, when the point charges are derived using the 6-31G* basis set we find that scaling the intramolecular electrostatic nonbond interactions is necessary. AM1 does not work very well for these compounds when compared to the ab initio methods and, therefore, should only be used in cases when ab initio calculations would be prohibitive. Based upon our results we feel that any force field that makes use of 6-31G* ESP derived atomic point charges will need to scale intramolecular interactions. Implications of scaling intramolecular interactions to the development of force fields based on 6-31G* ESP derived atomic point charges are discussed. © 1992 by John Wiley & Sons, Inc.  相似文献   

12.
CNDO-typ calculations based on a different choice of orbital exponents for 2s- and 2p-STO are able to reproduce almost exactly the order ofHartree-Fock orbital energies from high-accuracyab initio calculations. A uniform symmetry consideration for monocyclic molecules represents a useful method to correlate and compare the results. Some comments are given concerning the interpretation of UPS by means ofKoopmans theorem.
18. Mitt.:G. Kluge, undM. Scholz, Z. Chem., im Druck.  相似文献   

13.
Summary The maximum bond order hybrid orbital (MBOHO) procedure is tested onab initio level by use of the density matrix in Löwdin orthogonalized atomic orbital basis. The direct MBOHO calculation based on the whole density matrix includes also the hybridization of the inner atomic orbitals, and the MBOHO calculation based on the valence orbital part of the density matrix considers only the hybridization of the valence atomic orbitals. The concrete MBOHO calculations based on theab initio calculation with STO-3G basis show that the components of the s atomic orbitals in MBOHOs and the maximum bond orders obtained from the two kinds of MBOHO calculations are very close to each other, and that the two kinds of MBOHOs all have the excellent correlativity with the nuclear spin-spin coupling constants.The project supported by National Natural Science Foundation of China and the Excellent Young University Teacher's Foundation of State Education Commission of China.  相似文献   

14.
Ab initio MP2/6-31G* interaction energies were calculated for more than 80 geometries of stacked cytosine dimer. Diffuse polarization functions were used to properly cover the dispersion energy. The results of ab initio calculations were compared with those obtained from three electrostatic empirical potential models, constructed as the sum of a Lennard-Jones potential (covering dispersion and repulsion contributions) and the electrostatic term. Point charges and point multipoles of the electrostatic term were also obtained at the MP2/6-31G* level of theory. The point charge MEP model (atomic charges derived from molecular electrostatic potential) satisfactorily reproduced the ab initio data. Addition of π-charges localized below and above the cytosine plane did not affect the calculated energies. The model employing the distributed multipole analysis gave worse agreement with the ab initio data than the MEP approach. The MP2 MEP charges were also derived using larger sets of atomic orbitals: cc-pVDZ, 6-311 + G(2d, p), and aug-cc-pVDZ. Differences between interaction energies calculated using these three sets of point charges and the MP2/6-31G* charges were smaller than 0.8 kcal/mol. The correlated ab initio calculations were also compared with the density functional theory (DFT) method. DFT calculations well reproduced the electrostatic part of interaction energy. They also covered some nonelectrostatic short-range effects which were not reproduced by the empirical potentials. The DFT method does not include the dispersion energy. This energy, approximated by an empirical term, was therefore added to the DFT interaction energy. The resulting interaction energy exhibited an artifact secondary minimum for a 3.9-4.0 vertical separation of bases. This defect is inherent in the DFT functionals, because it is not observed for the Hartree-Fock + dispersion interaction energy.© 1996 John Wiley & Sons, Inc.  相似文献   

15.
STO-3G minimal basis set ab initio molecular orbital calculations were employed to study the electronic structure and conformational preferences in furan-2-N-methylmethyleneimide ( 1 ) and pyrrole-2-N-methylmethyleneimide ( 2 ). The theoretical results were examined by comparison with the parent molecular systems through a population analysis and molecular orbital interactions considerations. The OCCN-trans and the NCCN-cis forms were found to be the most stable structures in 1 and 2 , respectively. Comparisons were made with available experimental data. The theoretical results indicate thatπ-electron interactions and molecular orbital interactions are not significant factors in determining the conformational preferences which most likely depend on dipole-dipole interactions.  相似文献   

16.
This letter reports the results of ab initio quantum chemical calculations on the C1s core levels of model systems for a number of oxygen containing polymers. Conformational effects were studied. SCF calculations have been carried out with STO-3G and 4-31G basis sets, and Koopmans' theorem was applied to obtain the core-level binding energies. To evaluate the performance of the procedure SCF calculations were carried out on polyacrylic acid. The existence of oxygen-induced secondary substituent effects in the XPS-(ESCA-)spectra is discussed. A comparison with semi-empirical CNDO/2 results from Clark and Thomas has been made.  相似文献   

17.
The Roby version of the NDDO MO method has been analysed by performing extensive calculations on several molecular systems employing a minimum basis set of STO-3G functions. The effect of using uniform scale factors and those derived from theS-expansion technique, for electron repulsion integrals has also been studied. At the all-electron level, the method, with all its refinements, does not appear promising. The all-valence NDDO MO method after correction byS-expansion, however, yields results which are in good agreement withab initio results. The performance of this scheme is comparable to that of the simplifiedab initio method of Brown and Roby.  相似文献   

18.
The forms of responses of substituents to strongly changing pi-electron demands have been investigated using ab initio molecular orbital calculations at the STO-3G level of approximation; the non-parallel responses depend strongly upon the nature of the substituent. For example, CN, CHO, and NO2 act as pi electron donors in strongly electron deficient systems.  相似文献   

19.
Reference completely ab initio 6–3G and nonempirical 3G/MODPOT (ab initio effective core model potential) LCAO -MO -SCF calculations (using the same valence atomic orbital basis) were performed for a series of boron hydrides (B4H10, B5H9, B5H11, and B6H10) and a test 3G/MODPOT + VRDDO (variable retention of diatomic differential overlap for charge conserving integral prescreening) calculation were also performed for B5H9, B6H10, and B10H14. The agreement between the ab initio 6–3G and the corresponding 3G/MODPOT calculations was excellent for valence orbital energies, gross atomic populations, and dipole moments. The results also compared favorably to previous ab initio minimum STO basis results of Lipscomb and coworkers. The 3G/MODPOT + VRDDO calculations verified that for such spatially compact molecules (such as boron hydrides, which are fragments of polyhedra), the VRDDO procedure does not result in a noticeable savings in computer time for molecules of the size and shape of B5H9 and B6H10, in contrast to the savings previously realized for organic molecules of comparable atomic size. However, the agreement in calculational results between the 3G/MODPOT and the 3G/MODPOT +VRDDO results was still as extremely close as it had been for the organic molecules. 3G/MODPOT calculations were also carried out for B8H12, B9H15, B10H14, B10H14?2, 1,2-C2B4H6, and 1,6-C2B4H6 and the results compared to the previous minimum STO basis results. For B10H14, the 3G/MODPOT +VRDDO method led to savings in computer time of 28% over the 3G/MODPOT method itself. The agreement of the 3G/MODPOT results with available experimental photoelectron spectral data for B5H9 and 1,6-C2B4H6 was as good as that of the previous ab initio minimum STO basis calculations.  相似文献   

20.
Hermann M. Niemeyer 《Tetrahedron》1979,35(10):1297-1299
The performance of ab initio STO-3G and CNDO/2 molecular orbital methods in the calculation of properties of polynitromethanes is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号