首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
By using the LITTLEWOOD matrices A2n we generalize CLARKSON' S inequalities, or equivalently, we determine the norms ‖A2n: l(LP) → l(LP)‖ completely. The result is compared with the norms ‖A2n: ll‖, which are calculated implicitly in PIETSCH [6].  相似文献   

3.
For graphs A, B, let () denote the number of subsets of nodes of A for which the induced subgraph is B. If G and H both have girth > k, and if () = () for every k-node tree T, then for every k-node forest F, () = (). Say the spread of a tree is the number of nodes in a longest path. If G is regular of degree d, on n nodes, with girth > k, and if F is a forest of total spread ≤k, then the value of () depends only on n and d.  相似文献   

4.
We prove the following theorem: Let φ(x) be a formula in the language of the theory PA? of discretely ordered commutative rings with unit of the form ?yφ′(x,y) with φ′ and let ∈ Δ0 and let fφ: ? → ? such that fφ(x) = y iff φ′(x,y) & (?z < y) φ′(x,z). If I ∏ ∈(?x ≥ 0), φ then there exists a natural number K such that I ∏ ? ?y?x(x > y ? ?φ(x) < xK). Here I ∏1? denotes the theory PA? plus the scheme of induction for formulas φ(x) of the form ?yφ′(x,y) (with φ′) with φ′ ∈ Δ0.  相似文献   

5.
This paper is a continuation of [8]. We study weighted function spaces of type B and F on the Euclidean space Rn, where u is a weight function of at most exponential growth. In particular, u(χ (±|χ|) is an admissible weight. We deal with atomic decompositions of these spaces. Furthermore, we prove that the spaces B and F are isomorphic to the corresponding unweighted spaces B and F.  相似文献   

6.
Let X be a projective algebraic manifold of dimension n (over C), CH1(X) the Chow group of algebraic cycles of codimension l on X, modulo rational equivalence, and A1(X) ? CH1(X) the subgroup of cycles algebraically equivalent to zero. We say that A1(X) is finite dimensional if there exists a (possibly reducible) smooth curve T and a cycle z∈CH1(Γ × X) such that z*:A1(Γ)-A1(X) is surjective. There is the well known Abel-Jacobi map λ1:A1(X)-J(X), where J(X) is the lth Lieberman Jacobian. It is easy to show that A1(X)→J(X) A1(X) finite dimensional. Now set with corresponding map A*(X)→J(X). Also define Level . In a recent book by the author, there was stated the following conjecture: where it was also shown that (?) in (**) is a consequence of the General Hodge Conjecture (GHC). In this present paper, we prove A*(X) finite dimensional ?? Level (H*(X)) ≤ 1 for a special (albeit significant) class of smooth hypersurfaces. We make use of the family of k-planes on X, where ([…] = greatest integer function) and d = deg X; moreover the essential technical ingredients are the Lefschetz theorems for cohomology and an analogue for Chow groups of hypersurfaces. These ingredients in turn imply very special cases of the GHC for our choice of hypersurfaces X. Some applications to the Griffiths group, vanishing results, and (universal) algebraic representatives for certain Chow groups are given.  相似文献   

7.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   

8.
In this paper the long‐time behaviour of the solutions of 2‐D wave equation with a damping coefficient depending on the displacement is studied. It is shown that the semigroup generated by this equation possesses a global attractor in H(Ω) × L2(Ω) and H2(Ω)∩H(Ω) × H(Ω). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We consider a domain Ω in ?n of the form Ω = ?l × Ω′ with bounded Ω′ ? ?n?l. In Ω we study the Dirichlet initial and boundary value problem for the equation ? u + [(? ? ?… ? ?)m + (? ? ?… ? ?)m]u = fe?iωt. We show that resonances can occur if 2ml. In particular, the amplitude of u may increase like tα (α rational, 0<α<1) or like in t as t∞∞. Furthermore, we prove that the limiting amplitude principle holds in the remaining cases.  相似文献   

10.
Consider the advection–diffusion equation: u1 + aux1 ? vδu = 0 in ?n × ?+ with initial data u0; the Support of u0 is contained in ?(x1 < 0) and a: ?n → ? is positive. In order to approximate the full space solution by the solution of a problem in ? × ?+, we propose the artificial boundary condition: u1 + aux1 = 0 on ∑. We study this by means of a transmission problem: the error is an O(v2) for small values of the viscosity v.  相似文献   

11.
Various Markov chains on hypercubes ??are considered and their spectral representations are presentend in terms of Kronecker products. Special attention is given to random walks on the graphs ??(l = 1,n ? 2), where the vertex set is ?? and two vertices are connected if and only if their Hamming distance is at most l. It is shown that λ(??1)>λ(??1)>λ(??n?1)>λ(??n),l=2,…,n?2, where λ (??I) is the specturum of the random walk on ??I, and > denotes the majorization ordering. A similar majorization relation is established for graphs V1 where two veritces are connected if and only if their Hamming distance is exactly l. Some applications to mean times of these random walks are given. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
With 〈·〉 denoting an average with respect to the eigenvalue PDF for the Laguerre unitary ensemble, the object of our study is for I = (0, s) and I = (s, ∞), where χ = 1 for λlI and χ = 0 otherwise. Using Okamoto's development of the theory of the Painlevé V equation, it is shown that ?N(I; a, μ) is a τ‐function associated with the Hamiltonian therein, and so can be characterized as the solution of a certain second‐order second‐degree differential equation, or in terms of the solution of certain difference equations. The cases μ = 0 and μ = 2 are of particular interest, because they correspond to the cumulative distribution and density function, respectively, for the smallest and largest eigenvalue. In the case I = (s, ∞), ?N(I; a, μ) is simply related to an average in the Jacobi unitary ensemble, and this in turn is simply related to certain averages over the orthogonal group, the unitary symplectic group, and the circular unitary ensemble. The latter integrals are of interest for their combinatorial content. Also considered are the hard‐edge and soft‐edge scaled limits of ?N(I; a, μ). In particular, in the hard‐edge scaled limit it is shown that the limiting quantity ?hard((O, s); a, μ) can be evaluated as a τ‐function associated with the Hamiltonian in Okamoto's theory of the Painlevé III equation. © 2002 Wiley Periodicals, Inc.  相似文献   

13.
It is known that the joint distribution of the number of nodes of each type of an m‐ary search tree is asymptotically multivariate normal when m ≤ 26. When m ≥ 27, we show the following strong asymptotics of the random vector Xn = t(X, … , X), where X denotes the number of nodes containing i ? 1 keys after having introduced n ? 1 keys in the tree: There exist (nonrandom) vectors X, C, and S and random variables ρ and φ such that (Xn ? nX)/n ? ρ(C cos(τ2log n + φ) + S sin(τ2log n + φ)) →n→∞ 0 almost surely and in L2; σ2 and τ2 denote the real and imaginary parts of one of the eigenvalues of the transition matrix, having the second greatest real part. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004  相似文献   

14.
In this paper, we construct iterative methods for computing the generalized inverse A over Banach spaces, and also for computing the generalized Drazin inverses ad of Banach algebra element a. Moreover, we estimate the error bounds of the iterative methods for approximating A or ad. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We prove stability of the kink solution of the Cahn‐Hilliard equation ∂tu = ∂( ∂uu/2 + u3/2), x ∈ ℝ. The proof is based on an inductive renormalization group method, and we obtain detailed asymptotics of the solution as t → ∞. We prove stability of the kink solution of the Cahn‐Hilliard equation ∂tu = ∂( ∂uu/2 + u3/2), x ∈ ℝ. The proof is based on an inductive renormalization group method, and we obtain detailed asymptotics of the solution as t → ∞. © 1999 John Wiley & Sons, Inc.  相似文献   

16.
We consider solutions to the linear wave equation □g? = 0 on a (maximally extended) Schwarzschild spacetime with parameter M > 0, evolving from sufficiently regular initial data prescribed on a complete Cauchy surface Σ, where the data are assumed only to decay suitably at spatial infinity. (In particular, the support of ? may contain the bifurcate event horizon.) It is shown that the energy flux F(??) of the solution (as measured by a strictly timelike T? that asymptotically matches the static Killing field) through arbitrary achronal subsets ?? of the black hole exterior region satisfies the bound F(??) ≤ C E(v + u), where v and u denote the infimum of the Eddington‐Finkelstein advanced and retarded time of ??, v+ denotes max{1, v}, and u+ denotes max{1, u}, where C is a constant depending only on the parameter M, and E depends on a suitable norm of the solution on the hypersurface t ? u + v = 1. (The bound applies in particular to subsets ?? of the event horizon or null infinity.) It is also shown that ? satisfies the pointwise decay estimate |?| ≤ C Ev in the entire exterior region, and the estimates |r?| ≤ CR?E(1 + |u|)?1/2 and |r1/2?| ≤ CR?Eu in the region {rR?} ∩ J+(Σ) for any R? > 2M. The estimates near the event horizon exploit an integral energy identity normalized to local observers. This estimate can be thought to quantify the celebrated red‐shift effect. The results in particular give an independent proof of the classical result |?| ≥ C E of Kay and Wald without recourse to the discrete isometries of spacetime. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Any continuous linear operator T: LpLq has a natural vector-valued extension T: Lp(l) → Lq(l) which is automatically continuous. Relations between the norms of these operators in the cases of p = q and r = 2 were considered by Marcinkiewicz -Zygmund [28], Herz [14] and Krivine [19] - [21]. In this paper we study systematically these relations and given some applications. It turns out that some known results can be proved in a simple way as a consequence of these developments.  相似文献   

18.
In this paper we study weighted function spaces of type B(?n, Q(x)) and F(?n, Q(x)), where Q(x) is a weight function of at most polynomial growth. Of special interest are the weight functions Q(x) = (1 + |x|2)α/2 with α ? ?. The main result deals with estimates for the entropy numbers of compact embeddings between spaces of this type.  相似文献   

19.
Let x1,…,xm∈ \input amssym $ \Bbb R$ n be a sequence of vectors with ∥xi2 ≤ 1 for all i. It is proved that there are signs ε1,…,εm = ±1 such that where C1, C2 are some numerical constants. It is also proved that there are signs ε,…,ε = ±1 and a permutation π of {1,…,m} such that where C is some other numerical constant. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

20.
We study the maximal function Mf(x) = sup |f(x + y, t)| when Ω is a region in the (y,t) Ω upper half space R and f(x, t) is the harmonic extension to R+N+1 of a distribution in the Besov space Bαp,q(RN) or in the Triebel-Lizorkin space Fαp,q(RN). In particular, we prove that when Ω= {|y|N/ (N-αp) < t < 1} the operator M is bounded from F (RN) into Lp (RN). The admissible regions for the spaces B (RN) with p < q are more complicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号