首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
We prove some Liouville type results for stable solutions to the biharmonic problem $\Delta ^2 u= u^q, \,u>0$ in $\mathbb{R }^n$ where $1 < q < \infty $ . For example, for $n \ge 5$ , we show that there are no stable classical solution in $\mathbb{R }^n$ when $\frac{n+4}{n-4} < q \le \left(\frac{n-8}{n}\right)_+^{-1}$ .  相似文献   

2.
Let $G$ be a complex affine algebraic reductive group, and let $K\,\subset \, G$ be a maximal compact subgroup. Fix h $\,:=\,(h_{1}\,,\ldots \,,h_{m})\,\in \, K^{m}$ . For $n\, \ge \, 0$ , let $\mathsf X _{\mathbf{{h}},n}^{G}$ (respectively, $\mathsf X _{\mathbf{{h}},n}^{K}$ ) be the space of equivalence classes of representations of the free group on $m+n$ generators in $G$ (respectively, $K$ ) such that for each $1\le i\le m$ , the image of the $i$ -th free generator is conjugate to $h_{i}$ . These spaces are parabolic analogues of character varieties of free groups. We prove that $\mathsf X _{\mathbf{{h}},n}^{K}$ is a strong deformation retraction of $\mathsf X _{\mathbf{{h}},n}^{G}$ . In particular, $\mathsf X _{\mathbf{{h}},n}^{G}$ and $\mathsf X _{\mathbf{{h}},n}^{K}$ are homotopy equivalent. We also describe explicit examples relating $\mathsf X _{\mathbf{{h}},n}^{G}$ to relative character varieties.  相似文献   

3.
In this paper we study, for given $p,~1<p<\infty $ , the boundary behaviour of non-negative $p$ -harmonic functions in the Heisenberg group $\mathbb{H }^n$ , i.e., we consider weak solutions to the non-linear and potentially degenerate partial differential equation $$\begin{aligned} \sum _{i=1}^{2n}X_i(|Xu|^{p-2}\,X_i u)=0 \end{aligned}$$ where the vector fields $X_1,\ldots ,X_{2n}$ form a basis for the space of left-invariant vector fields on $\mathbb{H }^n$ . In particular, we introduce a set of domains $\Omega \subset \mathbb{H }^n$ which we refer to as domains well-approximated by non-characteristic hyperplanes and in $\Omega $ we prove, for $2\le p<\infty $ , the boundary Harnack inequality as well as the Hölder continuity for ratios of positive $p$ -harmonic functions vanishing on a portion of $\partial \Omega $ .  相似文献   

4.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

5.
6.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

7.
Let $V$ be a symplectic vector space of dimension $2n$ . Given a partition $\lambda $ with at most $n$ parts, there is an associated irreducible representation $\mathbf{{S}}_{[\lambda ]}(V)$ of $\mathbf{{Sp}}(V)$ . This representation admits a resolution by a natural complex $L^{\lambda }_{\bullet }$ , which we call the Littlewood complex, whose terms are restrictions of representations of $\mathbf{{GL}}(V)$ . When $\lambda $ has more than $n$ parts, the representation $\mathbf{{S}}_{[\lambda ]}(V)$ is not defined, but the Littlewood complex $L^{\lambda }_{\bullet }$ still makes sense. The purpose of this paper is to compute its homology. We find that either $L^{\lambda }_{\bullet }$ is acyclic or it has a unique nonzero homology group, which forms an irreducible representation of $\mathbf{{Sp}}(V)$ . The nonzero homology group, if it exists, can be computed by a rule reminiscent of that occurring in the Borel–Weil–Bott theorem. This result can be interpreted as the computation of the “derived specialization” of irreducible representations of $\mathbf{{Sp}}(\infty )$ and as such categorifies earlier results of Koike–Terada on universal character rings. We prove analogous results for orthogonal and general linear groups. Along the way, we will see two topics from commutative algebra: the minimal free resolutions of determinantal ideals and Koszul homology.  相似文献   

8.
The purpose of this paper is to bring a new light on the state-dependent Hamilton–Jacobi equation and its connection with the Hopf–Lax formula in the framework of a Carnot group $(\mathbf G ,\circ ).$ The equation we shall consider is of the form $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{t}+ \Psi (X_{1}u, \ldots , X_{m}u)=0\qquad &{}(x,t)\in \mathbf G \times (0,\infty ) \\ {u}(x,0)=g(x)&{}x\in \mathbf G , \end{array} \right. \end{aligned}$$ where $X_{1},\ldots , X_{m}$ are a basis of the first layer of the Lie algebra of the group $\mathbf G ,$ and $\Psi : \mathbb{R }^{m} \rightarrow \mathbb{R }$ is a superlinear, convex function. The main result shows that the unique viscosity solution of the Hamilton–Jacobi equation can be given by the Hopf–Lax formula $$\begin{aligned} u(x,t) = \inf _{y\in \mathbf G }\left\{ t \Psi ^\mathbf{G }\left( \delta _{\frac{1}{t}}(y^{-1}\circ x)\right) + g(y) \right\} , \end{aligned}$$ where $\Psi ^\mathbf{G }:\mathbf G \rightarrow \mathbb{R }$ is the $\mathbf G $ -Legendre–Fenchel transform of $\Psi ,$ defined by a control theoretical approach. We recover, as special cases, some known results like the classical Hopf–Lax formula in the Euclidean spaces $\mathbb{R }^n,$ showing that $\Psi ^{\mathbb{R }^n}$ is the Legendre–Fenchel transform $\Psi ^*$ of $\Psi ;$ moreover, we recover the result by Manfredi and Stroffolini in the Heisenberg group for particular Hamiltonian function $\Psi .$ In this paper we follow an optimal control problem approach and we obtain several properties for the value functions $u$ and $\Psi ^\mathbf G .$   相似文献   

9.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

10.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

11.
Let ${\mathbf{{f}}}$ be a $p$ -ordinary Hida family of tame level $N$ , and let $K$ be an imaginary quadratic field satisfying the Heegner hypothesis relative to $N$ . By taking a compatible sequence of twisted Kummer images of CM points over the tower of modular curves of level $\Gamma _0(N)\cap \Gamma _1(p^s)$ , Howard has constructed a canonical class $\mathfrak{Z }$ in the cohomology of a self-dual twist of the big Galois representation associated to ${\mathbf{{f}}}$ . If a $p$ -ordinary eigenform $f$ on $\Gamma _0(N)$ of weight $k>2$ is the specialization of ${\mathbf{{f}}}$ at $\nu $ , one thus obtains from $\mathfrak{Z }_{\nu }$ a higher weight generalization of the Kummer images of Heegner points. In this paper we relate the classes $\mathfrak{Z }_{\nu }$ to the étale Abel-Jacobi images of Heegner cycles when $p$ splits in $K$ .  相似文献   

12.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

13.
Let $\{\mu _{t}^{(i)}\}_{t\ge 0}$ ( $i=1,2$ ) be continuous convolution semigroups (c.c.s.) of probability measures on $\mathbf{Aff(1)}$ (the affine group on the real line). Suppose that $\mu _{1}^{(1)}=\mu _{1}^{(2)}$ . Assume furthermore that $\{\mu _{t}^{(1)}\}_{t\ge 0}$ is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then $\mu _{t}^{(1)}=\mu _{t}^{(2)}$ for all $t\ge 0$ . We end up with a possible application in mathematical finance.  相似文献   

14.
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343–391, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513–537, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053–2068, 2012).  相似文献   

15.
We study the category $\mathcal I _{\mathrm{gr }}$ of graded representations with finite-dimensional graded pieces for the current algebra $\mathfrak{g }\otimes \mathbf{C }[t]$ where $\mathfrak{g }$ is a simple Lie algebra. This category has many similarities with the category $\mathcal O $ of modules for $\mathfrak{g }$ , and in this paper, we prove an analog of the famous BGG duality in the case of $\mathfrak{sl }_{n+1}$ .  相似文献   

16.
Let $\mathcal{V }$ be a complete discrete valuation ring of mixed characteristic with perfect residue field. Let $X$ be a geometrically connected smooth proper curve over $\mathcal{V }$ . We introduce the notion of constructible convergent $\nabla $ -module on the analytification $X_{K}^{\mathrm{an}}$ of the generic fiber of $X$ . A constructible module is an $\mathcal{O }_{X_{K}^{\mathrm{an}}}$ -module which is not necessarily coherent, but becomes coherent on a stratification by locally closed subsets of the special fiber $X_{k}$ of $X$ . The notions of connection, of (over-) convergence and of Frobenius structure carry over to this situation. We describe a specialization functor from the category of constructible convergent $\nabla $ -modules to the category of $\mathcal{D }^\dagger _{\hat{X} \mathbf{Q }}$ -modules. We show that specialization induces an equivalence between constructible $F$ - $\nabla $ -modules and perverse holonomic $F$ - $\mathcal{D }^\dagger _{\hat{X} \mathbf{Q }}$ -modules.  相似文献   

17.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

18.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

19.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

20.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号