首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu/diamond composites have potential as a heat spreading material in small-scale devices. In this study, we show that the use of surface-roughened diamonds obtained by heat treatment under N2 atmosphere and subsequently coated with a thin layer of Ti coating is a feasible method to effectively improve the interfacial bonding and thermal conductivity of Cu/diamond composites. The diamond surface state and prepared composites were investigated by the combination of X-ray diffraction, Raman spectroscopy and microstructure analysis. It is found that the surface-roughened diamonds are in favor of the formation of effective chemical bonds between diamonds and Ti coating through the formation of thin TiC layer and simultaneously provide increased Cu/diamond contact area, which are beneficial to largely decrease the interfacial thermal resistance and thus to greatly enhance the thermal conductivity of Cu/diamond composites.  相似文献   

2.
Fabricating composite thin films is an effective and economic solution to improve the thermal performance of the films. The diamond particles of different sizes were successfully embedded in AlN thin films by a chemical solution approach, which was confirmed by scanning electron microscope, x-ray diffraction analysis and x-ray photoelectron spectroscopy. The thermal properties of the films embedded with different diamond particles were studied by using a 3-omega method, which was observed to be strongly dependent on the particle size. A 19 % enhancement in thermal conductivity can be achieved by embedding diamond particles of 1-μm radius in AlN thin films. However, the thermal conductivity decreases after embedding with 10-nm radius diamond particles. The results are discussed with high volume model, which confirms that the interface thermal resistance between the embedded materials and the films plays an important role in determining the thermal conductivity of the as-grown carbon material embedded AlN films.  相似文献   

3.
Ag particles of 3.9 and 5.1 nm mean size in silicate glasses were produced by ion exchange and subsequent annealing at 480 and 600 °C. These thermal treatments may induce stresses in matrix and particles in addition to the well known effect of surface atoms because of the thermal expansion mismatch of both materials. Structural characterisation of the particles by high-resolution electron microscopy revealed a size-dependent lattice dilatation quite opposite to the so far observed lattice contraction of similar metal/glass composites. This result, confirmed by X-ray absorption spectroscopy at the Ag K-edge, is discussed in terms of an Ag-Ag bond length increase near the particle surface. The temperature-dependent EXAFS spectra (10-300 K) indicate an increased thermal expansion coefficient of the particles with an increased mean particle size calculated on the basis of an anharmonic Einstein model. With that the bond length increase can be explained. The results can be interpreted by a combination of both the particle size effects and the influence of the surrounding matrix. Received 30 November 2000  相似文献   

4.
The photoluminescence induced in diamond by helium ion implantation into SiC/C nanocomposite samples and their structure revealed by high-resolution transmission electron microscopy have been investigated. It has been found that, apart from crystallites of silicon carbide, graphite, and amorphous carbon, in the structure of the composites there are spherical carbon particles containing concentric graphite-like shells (onion-like particles). It has been established that onion-like particles are formed during high-temperature treatment of SiC/C nanocomposites in the course of their preparation. It has been shown that, after the implantation with the subsequent thermal treatment, nanocomposite samples exhibit a luminescence characteristic of N-V centers in diamonds. The assumption has been made that the diamond crystallites are formed at the center of onion-like particles during high-temperature treatment of the composite.  相似文献   

5.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

6.
The nanosilicon connected by polypyrrole (PPy) and silver (Ag) particles was simply synthesized by a chemical polymerization process in order to prepare Si-based anodes for Li-ion batteries. The phase structure, surface morphology, and electrochemical properties of the as-synthesized powders were analyzed by X-ray diffraction, FT-IR, scanning electron microscopy, and galvanostatic charge/discharge measurements. The cycle stability of the Si-PPy-Ag composites was greatly enhanced compared with the pure nanosilicon. A high capacity of more than 823 mA h g?1 was maintained after 100 cycles. The improved electrochemical characteristics are attributed to the volume buffering effect as well as effective electronic conductivity of the polypyrrole and silver in the composite electrode.  相似文献   

7.
Interface of Ag/57Fe/Ag trilayer has been studied with a depth resolution of a fraction of a nanometer using x-ray standing waves generated by a W/Si multilayer mirror used as a substrate. Two interfaces of 38 Å thick Fe layer in Ag/57Fe/Ag trilayer are clearly resolved. It is found that the rms roughness of the two interfaces Fe-on-Ag and Ag-on-Fe are 10 ± 1.0 and 6 ± 1.0 Å, respectively. Conversion electron Mössbauer spectroscopy (CEMS) has been used to get information about the volume fraction of the intermixed region and the estimated roughness from the relative area of the two sextets of CEMS spectra is found to be 7.0 Å which is consistent with the average roughness obtained by X-ray fluorescence measurements. However, the asymmetry of the interfaces can not be inferred from CEMS measurements.  相似文献   

8.
The thermal conductivity of diamond-paraffin wax composites prepared by infiltration of a hydrocarbon binder with the thermal conductivity λ m = 0.2 W m−1 K−1 into a dense bed of diamond particles (λ f ∼ 1500 W m−1 K−1) with sizes of 400 and 180 μm has been investigated. The calculations using universally accepted models considering isolated inclusions in a matrix have demonstrated that the best agreement with the measured values of the thermal conductivity of the composite λ = 10–12 W m−1 K−1 is achieved with the use of the differential effective medium model, the Maxwell mean field scheme gives a very underestimated calculated value of λ, and the effective medium theory leads to a very overestimated value. An agreement between the calculation and the experiment can be provided by constructing thermal conductivity functions. The calculation of the thermal conductivity at the percolation threshold has shown that the experimental thermal conductivity of the composites is higher than this critical value. It has been established that, for the composites with closely packed diamond particles (the volume fraction is ∼0.63 for a monodisperse binder), the use of the isolated particle model (Hasselman-Johnson and differential effective medium models) for calculating the thermal conductivity is not quite correct, because the model does not take into account the percolation component of the thermal conductivity. In particular, this holds true for the calculation of the heat conductance of diamond-matrix interfaces in diamond-metal composites with a high thermal conductivity.  相似文献   

9.
金刚石和石墨单晶表面覆盖沉积铬的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文用X射线及电子衍射结构分析对金刚石和石墨单晶表面覆盖沉积铬进行了研究。将细颗粒金刚石或者高定向石墨片埋在经真空去气处理的电解铬粉中,在10-5—10-6Torr真空条件下,经高于900℃热处理,在金刚石及高定向石墨表面外延生长了Cr3C2和Cr7C3。对碳化铬生长的条件及覆盖沉积外延生长的物理机制进行了讨论。 关键词:  相似文献   

10.
A series of phenolic resin-polyphenylsilsesquioxane (PR-PPSQ) composites were prepared by in situ formation from phenyltriethoxysilane (PTES) precursor during polymerization of the PR. The precursor was firstly hydrolyzed in a solution, and then the sol was added to the PR polymerization system. The structures of the composites were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and solid-state 29Si nuclear magnetic resonance (Si-NMR). The PPSQs were spherical particles with a diameter of about 3 µm and nearly uniformly dispersed in the matrix, as revealed by scanning electron microscopy (SEM). The influence of PTES content on the thermal behavior of the PR was characterized by thermogravimetric analysis (TGA) in nitrogen and air atmospheres. The results showed that the onset temperature and residual weight of the composite containing 20 wt% PTES content were improved by 47°C and 8.4%, respectively, compared to the pure PR. The thermal oxidative stability was also greatly increased; the 50 wt% weight loss temperature rose from 567°C for PR to 601°C. The flexural strength of the composites was improved; in particular, the value of the composite containing 15 wt% PTES content was elevated by 32% (from 41.66 to 55.33 MPa).  相似文献   

11.
《Composite Interfaces》2013,20(5):483-495
The effect of particle size of graphite particles on the dispersion state of graphite particles and electrical conductivity of graphite/low-density polyethylene (LDPE) composites is investigated. Graphite particles which have plate-like and spherical shapes and mean particle sizes of 2.1 to 82.6 μm are used. Scanning electron microscopy observation showed that graphite particles are not aggregated and ordered along the direction of mixing-roll in the polymer matrix. X-ray diffraction measurements show that crystallite size of the (110) plane of polyethylene crystal and the crystallinity are significantly affected by the particle size of graphite particles. These results were interpreted as due to the orientation of PE crystallites. The electrical conductivity of composites changes discontinuously at the critical volume fraction of particles, Øc. The Øc values given by the percolation equation increase with decreasing of the particle size of graphites. The plate-like graphite particles with a mean particle size of 2.1 μm could induce conductivity at Øc of 0.135. The values of Øc increased linearly with increasing of the mean particle sizes of the plate-like graphites. The value of Øc of spherical graphite particle is the largest value, 0.292, in all specimens.  相似文献   

12.
《Composite Interfaces》2013,20(5):415-429
A randomly distributed multi-particle model considering the effects of particle/matrix interface and strengthening mechanisms introduced by the particles has been constructed. Particle shape, distribution, volume fraction and the particles/matrix interface due to the factors including element diffusion were considered in the model. The effects of strengthening mechanisms, caused by the introduction of particles on the mechanical properties of the composites, including grain refinement strengthening, dislocation strengthening and Orowan strengthening, are incorporated. In the model, the particles are assumed to have spheroidal shape, with uniform distribution of the centre, long axis length and inclination angle. The axis ratio follows a right half-normal distribution. Using Monte Carlo method, the location and shape parameters of the spheroids are randomly selected. The particle volume fraction is calculated using the area ratio of the spheroids. Then, the effects of particle/matrix interface and strengthening mechanism on the distribution of Mises stress and equivalent strain and the flow behaviour for the composites are discussed.  相似文献   

13.
The mean nearest distance between separated neighboring particles is one of the most important microstructural parameter for two phases or multiphase materials, such as hard particle re-inforced metal matrix composites. It influences most of the mechanical, thermal, and electrical properties of such materials. This is the first theoretical model that highlights the effects of the volume fraction of particles, mean particle size, and contiguity on the average nearest distance between separated neighboring particles.  相似文献   

14.
A series of diamond-like carbon (DLC) films with different microstructure were prepared by depositing carbon atoms on diamond surface with incident energy ranging from 1 to 100 eV. The thermal conductivity of the deposited films and the Kapitza resistance between the film and the diamond substrate were investigated. Results show that the average density, the average fraction of sp3 bonding and the thermal conductivity of the DLC films increase first, reaching a maximum around 20–40 eV before decreasing, while the Kapitza resistance decreases gradually with increased deposition energy. The analysis suggests that the thermal resistance of the interface layer is in the order of 10?10 m2K/W, which is not ignorable when measuring the thermal conductivity of the deposited film especially when the thickness of the DLC film is not large enough. The fraction of sp3 bonding in the DLC film decreases gradually normal to the diamond surface. However, the thermal conductivity of the film in normal direction is not affected obviously by this kind of structural variation but depends linearly on the average fraction of sp3 bonding in the entire film. The dependence of the thermal conductivity on the fraction of sp3 bonding was analysed by the phonon theory.  相似文献   

15.
利用磁控溅射分层制备Ag和SiO2薄膜,通过快速热处理,使Ag颗粒富集在复合薄膜的表面.研究了Ag膜层厚度、退火时间、退火温度和退火方式对Ag颗粒形貌的影响,以及Ag颗粒致密度对其共振吸收的影响.结果表明:通过控制每层Ag膜的厚度,可有效控制Ag颗粒形貌.当每层金属为2 nm、退火温度为500 ℃时,形成的颗粒粒径大小均匀且致密度较高.通过间断退火可有效降低Ag颗粒的粒径.发现Ag颗粒表面等离子共振吸收并没有随颗粒粒径的减小而明显降低,甚至提高.这和以往的报道不同.通过深入研究金属颗粒表面等离子体产生机理,发现其表面等离子共振吸收增强的原因是致密度较高的颗粒表面能级与费米能级差值较大,Ag颗粒内部的电子向颗粒表面迁移越多,形成新的费米能级E'F的电子数就越多,表面等离子共振吸收就越强.最终得出了金属颗粒共振吸收不单纯依赖于金属粒径、和颗粒的致密度也有很大关系的结论.  相似文献   

16.
High-pressure powder neutron diffraction of wüstite-Fe0.93O has been achieved to 12 GPa using a large gem-moissanite (SiC) anvil cell. The moissanite anvils are weakly absorbing and provide greater neutron fluxes to the sample than is possible with tungsten carbide anvils. There is minimal diffraction overlap from the single-crystal moissanite anvils compared to tungsten carbide or synthetic diamond anvils, providing cleaner background profiles. The required sample volume for high-pressure neutron diffraction is dramatically reduced to several cubic millimeters. High-quality powder diffraction patterns of wüstite were recorded at 90 min exposure times on the HIPPO diffractometer at LANSCE when the sample volume was in the range of ~10 mm3. This is about two orders of magnitude smaller than the necessary sample volume (~1.0 cm3) for the same kind of experiment with other high-pressure cells and nominal neutron fluxes.  相似文献   

17.
Carbon nanotube reinforced Cu–Ti alloy (CNT/Cu–Ti) composites are fabricated by a powder metallurgical method. The interfacial bonding of CNT/Cu–Ti composites is evidently improved, which is attributed to the formation of a thin layer of TiC at the interface. The thermal conductivity of the composites increases by 7.5 % and 15.1 % compared to that of Cu–Ti matrix at CNT loadings of 5 vol.% and 10 vol.%, respectively. The matrix-alloying is therefore an effective way to enhance the thermal conductivity of CNT/Cu composites.  相似文献   

18.
The spectra of two-photon-excited fluorescence in the near ultraviolet are studied in diamond powders prepared by detonation synthesis, with particle sizes of 20–40 Å. The spectra of ultradisperse diamond powders are compared with that of a diamond single crystal. It is shown that the proposed method can be used to detect ultradisperse diamonds in quantities as low as 10?12 g.  相似文献   

19.
An efficient approach was employed to simultaneously functionalize and reduce the graphene oxide (GO) with p-phenylene diamine (PPD) using simple refluxing. There was a possibility of nucleophilic substitution of amino moieties of PPD with the epoxy groups of GO. The polythiophene (PTh) and polythiophene-co-poly(methylmethacrylate) (PTh-co-PMMA) nanocomposites with chemically modified GO were prepared using in situ polymerization technique. Two series of nanocomposites that is PTh/PPD-GO and PTh-co-PMMA/PPD-GO were designed. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), thermal conductivity, and electrical conductivity measurement. The FTIR spectra depicted the characteristic absorption peaks for the formation of copolymer and their composites with PPD-GO. The SEM micrographs showed that the PPD-GO nanosheets were homogeneously dispersed in copolymer matrix forming nano-granular morphology. The nanofluids were prepared by suspending modified GO particles inside the basefluid of polythiophene and PTh-co-PMMA. The thermal conductivity of nanocomposites was significantly improved even with low PPD-GO loading. The thermal conductivity of PTh-co-PMMA/PPD-GO with 1.5 wt.% filler was increased to 1.42 W/mK at a higher temperature. The XRD patterns confirmed the presence of chemical interactions between the copolymer and filler particles. The electrical conductivity of PTh-co-PMMA/PPD-GO was also found to increase in the range of 6.1 × 10?3–2.5 × 10?2 S/cm. Novel PTh-co-PMMA/PPD-GO-based nanocomposite is potentially significant in high-performance thermal systems.  相似文献   

20.
《Composite Interfaces》2013,20(4):243-256
The thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites was increased by up to 97% by surface treatment of the particles prior to composite fabrication. The increase in thermal conductivity is due to decrease in the filler-matrix thermal contact resistance through the improvement of the interface between matrix and particles. Effective treatments for BN involved acetone, acids (nitric and sulfuric) and silane. The most effective treatment involved silane such that the coating resulted from the treatment amounted to 2.4% of the weight of the treated BN. The effectiveness of a treatment was higher for a larger BN volume fraction. At 57 vol.% BN, the thermal conductivity reached 10.3 W/ m·K. The treatments had little effect on the specific surface area of the BN particles. Silane treatments were also effective for AlN. At 60 vol.% AlN, the thermal conductivity reached 11.0 W/m·K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号