首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BaMnO3 nanorods were synthesized at 200 °C and atmospheric pressure using the composite-hydroxide mediated method. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to investigate the structure, size, morphology, phase purity and elemental composition of BaMnO3 nanorods. Electrical characterization of BaMnO3 pellet was performed at 300-400 K and in the frequency range 200 Hz-2 MHz. Temperature dependence of AC conductivity suggests that the BaMnO3 pellet behaves as a semiconducting material and conduction across the pellet can be explained by the correlated barrier hopping model. Impedance analysis was performed using the equivalent circuit model (R1Q1C1)(R2C2) and it suggests a single relaxation process in the BaMnO3 pellet at a particular temperature. The analysis reveals that the BaMnO3 pellet behaves like an n-type semiconductor material due to the presence of oxygen vacancies and some disorder. Modulus spectroscopy also supports the impedance results.  相似文献   

2.
The results of studying the physical properties of thin CdTe films obtained by the thermal evaporation method have been presented. The optical constants and the band gap of the films under study have been determined (E g = 1.46 eV). It has been established based on the investigation of optical properties and the Raman spectrum of the films that they possess high structural quality. The activation energy of the electrical conductivity of CdTe films has been determined: E a = 0.039 eV. The measured spectral dependences of the impedance of CdTe thin films are characteristic of the inhomogeneous medium with two time constants: τgb = R gb C gb = 1/ωgb = 1.62 × 10?3 s and τg = R g C g = 1/ωg = 9.1 × 10?7 s for grain boundaries and grains, respectively.  相似文献   

3.
The lead pyrophosphate, Pb2P2O7, compound was prepared by conventional solid-state reaction and identified by X-ray powder diffractometer. Pb2P2O7 has a triclinic structure whose electrical properties were studied using impedance spectroscopy technique. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies E g = 0.66 eV and E gb = 0.67 eV, respectively. The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

4.
The LiCo3/5Cu2/5VO4 compound is prepared by a solution-based chemical method and characterized by the techniques of X-ray diffraction, scanning electron microscopy and complex impedance spectroscopy. The X-ray diffraction study shows an orthorhombic unit cell structure of the material with lattice parameters a=13.8263 (30) Å, b=8.7051 (30) Å and c=3.1127 (30) Å. The nature of scanning electron micrographs of a sintered pellet of the material reveals that grains of unequal sizes (~0.2–3 μm) present an average grain size with a polydisperse distribution on the surface of the sample. Complex plane diagrams indicate grain interior and grain boundary contributions to the electrical response in the material. The electrical conductivity study reveals that electrical conduction in the material is a thermally activated process. The frequency dependence of the a.c. conductivity obeys Jonscher’s universal law.  相似文献   

5.
Undoped zinc oxide has been prepared at various growth temperatures by a conventional sintering process. The crystal structures of the prepared samples were studied by X-ray diffraction. The frequency-dependent dielectric dispersion of all the sintered ZnO ceramics was investigated in the temperature range from ?100 to 30 °C and in the frequency range from 1 Hz to 10 MHz by broadband dielectric spectroscopy. An analysis of the complex permittivity and electric modulus as a function of frequency has been performed assuming a distribution of relaxation times. The pellet sintered at 900 °C showed the lowest value of the dielectric strength. The temperature dependent of the parameter α is discussed. While the charge transport through the grain and grain boundary regions was examined by impedance spectroscopy. Activation energy values extracted from conduction measurements were found to be in the range of 0.09 and 0.3 eV.  相似文献   

6.
The effect of Fe-doping at Mn-site on the structural and electrical properties of Nd0.67Ba0.33Mn1?xFexO3 (0 ≤ x ≤ 0.05) perovskites has been investigated. X-ray diffraction patterns show that the structural parameters change slightly due to the fact that the Fe3+ ions replacing the Mn3+ have similar ionic radius. The electrical properties of these samples have been investigated using complex impedance spectroscopy technique. a function of the frequency at different temperatures. When increasing the Fe-content, a decrease of dc conductivity was observed throughout the whole explored temperature range and the deduced activation energy values are found to increase from 128 meV for x = 0 to 166 meV for x = 0.05. The curves of the imaginary part of impedance (Z″) show the presence of relaxation phenomenon in our samples. The complex impedance spectra show semicircle arcs at different temperatures and an equivalent circuit of the type of Rg + (Rgb//Cgb) has been proposed to explain the impedance results.  相似文献   

7.
Using a standard high-temperature solid-state reaction technique, polycrystalline samples of (Bi1?x , Na x ) (Fe1?x , Ta x ) O3 (x = 0.0, 0.5) were prepared. The formation of the desired materials was confirmed by X-ray diffraction. The surface texture of the prepared materials recorded by scanning electron microscope exhibits a uniform grain distribution with small voids suggesting the formation of high-density pellet samples. The impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The relative dielectric constant and loss tangent of BiFeO3 decrease on addition of NaTaO3 (x = 0.5). The effect of addition of NaTaO3 on grain and grain boundary contributions in the resistive and capacitive components of BiFeO3 was studied using complex impedance spectroscopy. The value of activation energy due to both grain and grain boundary of both the samples is nearly same. The nature of variation of dc conductivity confirms the Arrhenius behavior of the materials. Study of frequency dependence of ac conductivity suggests that the materials obey Jonscher’s universal power law and the presence of ionic conductivity.  相似文献   

8.
袁昌来  刘心宇  黄静月  周昌荣  许积文 《物理学报》2011,60(2):25201-025201
以传统的固相反应法制备了Bi0.5Ba0.5FeO3陶瓷,并采用X射线衍射仪、扫描电子显微镜、直流阻温测试仪和交流阻抗分析仪测试了Bi0.5Ba0.5FeO3陶瓷的微结构和电性能.分析结果表明:Bi0.5Ba0.5FeO3陶瓷具有立方钙钛矿结构,颗粒尺寸约1.0 μm;在16—280 ℃范围内,Bi0.5Ba0.5FeO3陶瓷表现出明显的负温度系数热敏效应,其热敏常数、活化能分别为6490 K及0.558 eV;介电温谱揭示,在280 ℃下Bi0.5Ba0.5FeO3陶瓷材料没有出现相变行为.对于交流阻抗谱,采用3个串联的RQ(RQ为并联)等效部件来拟合分析,拟合结果表明拟合数据与实验数据高度匹配,且这3个等效部件分别代表晶界、晶粒和晶壳的贡献.3个部件中,晶粒对陶瓷电阻阻值的影响最大,晶壳贡献次之,晶界最小,且3个部件电阻值都显示出负温度系数效应.在25—115 ℃范围内,电学模量虚部峰频与阻抗虚部峰频始终不匹配,意味着Bi0.5Ba0.5FeO3陶瓷体内部一直表现出局域导电机理. 关键词: 0.5Ba0.5FeO3陶瓷')" href="#">Bi0.5Ba0.5FeO3陶瓷 电性能 阻抗分析  相似文献   

9.
The polycrystalline sample of Li2Pb2Y2W2Ti4Ta4O30 was prepared by a high-temperature solid-state reaction technique. Room temperature X-ray structural analysis confirms the formation of a single-phase compound. The surface morphology of the sintered pellet sample recorded by SEM (scanning electron microscope) exhibits a uniform grain distribution with few voids. Detailed studies of dielectric constant, tangent loss and remanent and spontaneous polarization with temperature and frequency exhibit the existence of ferroelectricity in the material. The temperature and frequency dependence of impedance parameters (impedance, modulus, etc) of the material exhibits a strong correlation between these electrical parameters with its micro-structure (i.e., bulk, grain boundary, etc). The nature of variation of pyroelectric-coefficient and current with temperature suggests that material has good pyroelectric properties useful for fabrication of pyroelectric detector.  相似文献   

10.
In order to investigate the effects of grain boundaries on the electrical properties of La0.50Ca0.50MnO3+δ impedance spectroscopic studies have been carried out at 77 K. With time there is irreversible formation of domains, which promotes the insulating behaviour of this charge ordered material. As time passes, the grain boundary resistance increases, showing the canted spin nature of the material. However, after 150 hours the grain boundary resistance becomes saturated, indicating that most of the metastable states have relaxed and transformed into stable charge ordered ones, most probably of antiferromagnetic nature. An equivalent circuit model, R1(R2C2)(R3C3), i.e., a resistor–capacitor network, has been proposed to explain the impedance results.  相似文献   

11.
Differences in complex admittance plots of β″-alumina and NASICON ceramic samples are discussed on the basis of analysis of their equivalent electrical circuit properties. The grain boundary properties could be derived from admittance plots only when relaxation time of the double layer is greater than that of the grain boundary. The importance of a proper choice of electrodes is emphasized. Certain electrodes, e.g. platinum, due to their high value of the double layer capacitance make possible such characterization. Other electrodes, e.g. graphite and gold, make it difficult in NASICON and impossible in β″-alumina because observed values of the grain boundary capacitance Cgb are much greater for β″-alumina than for NASICON samples. The reasons for high values of the Cgb in β″-alumina and smaller values of the Cgb in NASICON are discussed.  相似文献   

12.
In the current paper, the main aim is to fabricate the BaMnO3 nanostructures via the sonochemical route. The various factor, including precursors, reaction time and power of sonication can affect the shape, size, and purity of the samples. We utilized X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray energy dispersive spectroscopy (EDS) to characterize the BaMnO3 nanostructures. The optical property of BaMnO3 nanostructures was explored by Ultraviolet–visible spectroscopy (UV–vis) and the energy gap was suitable for catalytic activity (about 2.75 eV). Changing the precursor can affect the size, nanoparticle shape, architectures, and uniformity of the samples. We employed the BaMnO3 nanostructures for O2 evolution reaction as catalysts. It can observe that increasing the homogeneity of the catalysts can increase the efficiency of the Oxygen evolution reaction. The maximum amount of the O2 evolution and the highest TOF and TON are related to nanoplate disc using barium salicylate as a precursor of barium. As a result, we can nominate the BaMnO3 nanostructures as an effective and novel catalyst for water-splitting reaction.  相似文献   

13.
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.  相似文献   

14.
The statics and dynamics of vacancies and adatoms on different surface orientations in two hcp materials are studied by using static relaxation techniques and many-body potentials. Formation and migration energies and entropies as well as attempt frequencies are evaluated and used in the random walk approach to obtain correlation factors and diffusivities. It is found that the main features of surface diffusion are dominated by jumps on and between a few atomic layers, so that a consistent comparison between the two mechanisms is feasible. The activation energies and the diffusivities for different environments, namely, bulk Q b, D b, symmetric grain boundaries Q gb, D gb, and surfaces, Q s, D s, calculated using the same simulation technique and interatomic potentials, fulfil the expected relationships Q s < Q gb < Q b and D s > D gb > D b. It is also found that generally adatoms are faster surface diffusers than vacancies.  相似文献   

15.
The polycrystalline Bi1?x Gd x FeO3 (BGFO) (x=0.0, 0.05, 0.10, 0.15, 0.20) materials were synthesized by a solid-state reaction (mixed oxide) technique. Preliminary X-ray structural analysis of the compounds confirmed the formation of single-phase polycrystalline samples. Room temperature scanning electron micrographs of the materials revealed the size, type and distribution of grains on the surface of samples. Studies of impedance, electrical modulus and electric conductivity of the materials in a wide frequency (10–1000 kHz) and temperature (30–500 °C) range using a complex impedance spectroscopy technique have provided considerable vital information on contribution of grains, grain boundary and interface in these parameters. A strong correlation between these electrical parameters and microstructures (bulk, grain boundary, nature of charge carrier, etc.) of the materials was established. The frequency dependence of electric modulus and impedance of the material shows the presence of non-Debye type of relaxation.  相似文献   

16.
S. Nasri  M. Megdiche  K. Guidara  M. Gargouri 《Ionics》2013,19(12):1921-1931
The KFeP2O7 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction. The AC electrical conductivity and the dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 200 Hz–5 MHz and 553–699 K, respectively. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies Eg?=?0.94 (3)?eV and Egb?=?0.89 (1)?eV. The grain-and-grain boundary conductivities at 573 K are 1.07?×?10?4 and 1.16?×?10?5?1 cm?1). The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures. The near value of the activation energies obtained from the equivalent circuit, conductivity data, and analysis of M″ confirms that the transport is through ion hopping mechanism.  相似文献   

17.
采用固相合成工艺,制备了Bi05Ba05Fe05Ti049Nb001O3(BBFTN)热敏陶瓷,借助X射线衍射仪、扫描电子显微镜、阻温测试仪和交流阻抗谱考察其微结构、直流电阻、介电特性、阻抗和电学模量方面的电学性能. 结果表明:BBFTN材料依然为立方钙钛矿结构,平均晶粒尺寸约为10 μm,晶格常数相对于BaTiO3的晶格常数有所变大;室温电 关键词: 05Ba05Fe05Ti049Nb001O3')" href="#">Bi05Ba05Fe05Ti049Nb001O3 微结构 电学性能  相似文献   

18.
Two to ten nanometer thick polycrystalline Pd films were prepared on the (1 1 1) surface of Ag single crystal and investigations of the Ag diffusion along Pd grain boundaries were carried out using the Hwang-Balluffi method. The samples were monitored by Auger electron spectroscopy (AES) during isothermal heat treatments in the 438-563 K temperature range. Using plausible simplifying assumptions, the activation energy of the product of the grain boundary (GB) diffusion coefficient and k′ (k′ = cs/cgb; cs and cgb are the surface and GB concentration, respectively) was calculated (0.99 ± 0.08 eV) from the evaluated saturation coefficients of the surface accumulation. This energy, for weak temperature dependence of k′, is approximately equal to the activation energy of the GB diffusion.  相似文献   

19.
The (BaxLa1?x)Ti1?x/4O3 (BLT,0.001 ≤ x ≤ 0.005) amorphous gel was prepared by sol-gel process. The electricalproperties of obtained materials has been investigated by impedance spectroscopy. Detailedanalysis of impedance spectra allowed to propose an adequate equivalent circuit, whichdescribed the electric properties of discussed materials very well. Basing on the obtainedcircuits and the fitting procedure the grain and grain boundary resistivity was determinedas a function of temperature and La concentration. With increase of La admixture thecontribution of grain and grains impedance to the bulk impedance changes. It was foundthat the small amount of La additive decreases the blocking factor of the grain boundaryin the temperature range 600–850 K, whereas the amount of La on the level of 0.4–0.5 mol.%causes the sharp increase of the mentioned factor. The fact may be attributed to adecrease of grain activation energy and increase of the grain boundary one.  相似文献   

20.
Nanopowders of composition Ce0.9(Eu1 ? xSrx)0.1O2 ? δ (x = 0, 0.1, 0.3, 0.5, and 0.7) were prepared by the Pechini method. The microstructure and properties of powders and sintered ceramics are discussed in this paper. X-ray diffraction (XRD) and Raman spectroscopy revealed that all powders calcined at 550 °C were single phase, with the cubic fluorite-type structure. The good sintering properties of the synthesized nanopowders allowed us to obtain dense ceramics (> 96% theoretical density). Dense ceramics with density higher than 96% of the theoretical value were obtained without the need of sintering aid. The morphology of the sintered ceramics was evidenced by scanning electron microscopy (SEM). The ionic conductivities of doped and co-doped ceria ceramics were investigated as a function of temperature by using AC impedance spectroscopy in the temperature range 250–800 °C. Impedance spectra indicate a significant diminution of grain boundary resistance after partial substitution of Eu with Sr in europia-doped ceria sample, especially in the low and intermediate-temperature range. The best conductivity was evidenced for the Ce0.9Eu0.09Sr0.01O2 ? δ composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号