首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many brittle materials, such as single-crystal materials, amorphous materials, and ceramics, are widely used in many industries such as the energy industry, aerospace industry, and biomedical industry. In recent years, there is an increasing demand for high-precision micro-machining of these brittle materials to produce precision functional parts. Traditional ultra-precision micro-machining can lead to workpiece cracking, low machined surface quality, and reduced tool life. To reduce and further solve these problems, a new micro-machining process is needed. As one of the nontraditional machining processes, rotary ultrasonic machining is an effective method to reduce the issues generated by traditional machining processes of brittle materials. Therefore, rotary ultrasonic micro-machining (RUμM) is investigated to conduct the surface micro-machining of brittle materials. Due to the small diameter cutting tool (<500 μm) and high accuracy requirements, the impact of input parameters in the rotary ultrasonic surface micro-machining (RUSμM) process on tool deformation and cutting quality is extremely different from that in rotary ultrasonic surface machining (RUSM) with relatively large diameter cutting tool (∼10 mm). Up till now, there is still no investigation on the effects of ultrasonic vibration (UV) and input variables (such as tool rotation speed and depth of cut) on cutting force and machined surface quality in RUSμM of brittle materials. To fill this knowledge gap, rotary ultrasonic surface micro-machining of the silicon wafer (one of the most versatile brittle materials) was conducted in this study. The effects of ultrasonic vibration, tool rotation speed, and depth of cut on tool trajectory, material removal rate (MRR), cutting force, cutting surface quality, and residual stress were investigated. Results show that the ultrasonic vibration could reduce the cutting force, improve the cutting surface quality, and suppress the residual compressive stress, especially under conditions with high tool rotation speed.  相似文献   

2.
Residual stresses and white layer in electric discharge machining (EDM)   总被引:2,自引:0,他引:2  
The effect of dielectric liquid and electrode type on white layer structure in electric discharge machined surfaces has been studied in terms of retained austenite and residual stresses using X-ray diffraction method. The machining tests were conducted by using two different tool electrodes (copper and graphite) and dielectric liquid (kerosene and de-ionized water) under same operational conditions. The present work suggests that the surface is saturated with carbon irrespective of the tool electrode material when machining with kerosene dielectric liquid. But, retained austenite is formed on the surface due to carbon uptake from graphite tool electrode when machining with de-ionized water dielectric liquid. On the other hand, even though surface residual stresses increase with structural non-homogeneities in the white layer, no clear consequences have been observed in residual stress distribution beneath the white layer.  相似文献   

3.
Molecular dynamics (MD) simulations of nanometric-cutting copper are conducted to study the critical rake angle during the cutting process. A new approach based on the maximum displacement of atoms in cutting direction is proposed to estimate the chip formation in MD simulation. It is found that the minimum rake angle for chip formation is ?65°–(?70°) and the subsurface deformations of copper are mostly the dislocation and stacking faults. Three-dimensional simulation results show that the effective rake angle of stagnation region is constant with the same depth of cut. According to the limited depth of cut of copper can be achieved, the available minimum tool edge radius is suggested to be not less than 10?nm.  相似文献   

4.
The titanium alloys cause high machining heat generation and consequent rapid wear of cutting tool edges during machining. The ultrasonic assisted turning (UAT) has been found to be very effective in machining of various materials; especially in the machining of “difficult-to-cut” material like Ti6Al4V. The present work is a comprehensive study involving 2D FE transient simulation of UAT in DEFORM framework and their experimental characterization. The simulation shows that UAT reduces the stress level on cutting tool during machining as compared to that of in continuous turning (CT) barring the penetration stage, wherein both tools are subjected to identical stress levels. There is a 40–45% reduction in cutting forces and about 48% reduction in cutting temperature in UAT over that of in CT. However, the reduction magnitude reduces with an increase in the cutting speed. The experimental analysis of UAT process shows that the surface roughness in UAT is lower than in CT, and the UATed surfaces have matte finish as against the glossy finish on the CTed surfaces. Microstructural observations of the chips and machined surfaces in both processes reveal that the intensity of thermal softening and shear band formation is reduced in UAT over that of in CT.  相似文献   

5.
A dynamic multiscale simulation based on quasicontinuum method (QC) has been conducted to study the effect of tool geometry in nanometric cutting process of single crystal copper. In the simulation, the many-body EAM potential is used for the interactions between copper atoms in of the workpiece. The simulation captures the atomistic behaviors of material removal mechanisms from the free surface and the mobility of dislocations and their interactions with the computational cost of local atomistic simulation method. Simulations are performed on single crystal copper to study the atomistic details of material removal, chip formation, sub-surface deformation, and machining mechanism. The simulation results demonstrate that tool edge radius has significant effect on chip formation and subsurface deformation, because the effective rake angle varies with the tool edge radius. In addition, different effective rake angles result in different stress states and smoother surface can be obtained under bigger clearance angle. The variations of tangential force, normal force as well as the ratio of normal force to tangential force are obtained to analyze the effects of tool edge radius, rake angle and clearance angle in quantitative way.  相似文献   

6.
We address the effects of processing parameters on residual stresses and fatigue properties of LY2 Al alloy by laser shock processing (LSP). Results show that compressive residual stresses are generated near the surface of samples due to LSP. The maximum compressive residual stress at the surface by two LSP impacts on one side is higher than that by one LSP impact. The maximum value of tensile residual stress is found at the mid-plane of samples subjected to two-sided LSP. Compared with fatigue lives of samples treated by single-sided LSP, lives of those treated by two-sided LSP are lower. However, these are higher than untreated ones.  相似文献   

7.
碳化硅反射镜坯体光学加工的残余应力测量与分析   总被引:1,自引:0,他引:1  
测量并分析了碳化硅反射镜坯体光学加工的残余应力。采用X射线衍射法测定了磨削成形、研磨以及抛光过程引入的表面残余应力的性质和大小;采用逐层抛光法测定了在用120#粒度金刚石砂轮磨削时引入的残余应力层厚度。研究结果表明:在用120#金刚石砂轮磨削加工时沿磨削方向和垂直于磨削方向分别引入了残余拉应力和残余压应力,其大小分别为40MPa和70MPa,应力层深度约为60μm,大于裂纹层深度;在用W7金刚石微粉研磨时引入了残余压应力,在其作用范围内残余应力平均值为60~80MPa;在抛光时理论上会引入残余压应力。在此基础上提出了在碳化硅反射镜坯体的光学加工过程中,可以通过研磨消除磨削引入的裂纹层和残余应力层。  相似文献   

8.
We investigate the influence of laser treatment on the formation of residual stresses relative to the changing structure-phase composition in the surface layers of high-chromium cast iron with 16% chromium. We show that appreciable tensile stresses are produced in the region of the laser action and that their distribution depends on whether the laser treatment was or was not accompanied by surface melting. The produced residual stresses are responsible for the formation of a large number of cracks. Preheating to 400°C lowers the level of the tensile residual stresses and prevents crack formation. A pellet stream acting on the surface produces cold-work hardening layers in which the tensile stresses change into compressive ones. The depth, hardness, and magnitude of the compressive residual stresses depend on the method used to work harden the cast iron and on the angle of attack of the pellet as it acts on the surface.Translation of Preprint No. 195, Lebedev Institute of Physics, Academy of Sciences of the USSR.  相似文献   

9.
Using laser surface melting (LSM) of a roller, to obtain the desired distribution of the microstructure, hardness and residual stresses with minimum distortion, is essential in order to improve machining efficiency and to achieve reliable service performance. In this study, a 3D finite element model has been developed to simulate the wide-band LSM process and predict the thermal and mechanical properties in the melted zone. The microstructure evolution, hardness distribution and stress field in the melted zone with different laser power were simulated. With the increase of the laser power from 3000 to 3800 W, the width and the depth of the laser melted layer increase, while the laser power has a little effect on the martensite contents, which exceed 90% in the melt-hardened zone. It greatly affects the mechanical properties in the melt-hardened zone with its volumetric expansion effect and the hardness increases by 2-3 times. The residual stress distributed within the melt-hardened zone is always of the compressive type. The amplitude of compressive stress exists in the transition region, and the amplitude of von Mises stress within the heat affected-zone (HAZ) decreases with the increase in laser power. The accuracy of the developed finite element simulation strategy is validated for phase proportion and hardness distributions through the wide-band LSM on roller steel with proper instrumentation for data measurement. This agreement is encouraging.  相似文献   

10.
采用高功率激光器多次冲击2024铝合金,用X射线衍射技术分析了冲击区域的残余应力,研究了冲击残余应力状态分布规律,并用其评价激光冲击强化效果。研究表明,随着冲击次数增加,塑变量及塑性应变梯度逐渐减小,测点是双向压应力状态,而4次冲击时,塑性应变梯度增大,光斑中心是单向压应力状态,其他点是双向压应力状态。当激光功率密度为2.8 GW/cm2时,3次冲击强化效果最佳,材料是二向压应力状态,残余最大主应力及应力强度的均值最大,方差最小,分布基本均匀,塑性应变梯度较小。  相似文献   

11.
The life of structural members that experience cyclic loading is improved by the introduction of surface compressive residual stresses. A high-pressure oil jet is used for the introduction of surface compressive residual stresses in aluminum alloys, AA6063-T6 and AA6061-T4. The peening machine designed and developed in the laboratory is capable of generating high pressures using hydraulic oil. The magnitude of residual stress developed depends upon the stand-off distance and yield strength of the material. A hardened layer up to a depth of about 350 μm was developed in the materials investigated. The residual stresses and surface hardening induced are comparable to that produced by other peening processes. An analytical model is proposed to predict the impact pressure.  相似文献   

12.
A calculation method based on the shear lag approach was presented to get an approximate estimate of influences of residual stresses and frictional shear stress at the debonded interface on the interfacial debonding behavior at the notch-tip along fiber direction in two-dimensional unidirectional double-edge-notched composites. With this method, the energy release rate for initiation and growth of debonding as a function of composite stress were calculated for some examples. The calculation results showed in outline how much the tensile and compressive residual stresses in the matrix and fiber along fiber direction, respectively, act to hasten the initiation and growth of the debonding when the final cut element in the notch is matrix, while they act to retard them when the final cut element is fiber, and how much the frictional shear stress at the debonded interface reduces the growth rate of the debonding.  相似文献   

13.
本文以超声波加工机对玻璃等硬脆材料元件的加工工艺为主要研究对象,阐述了超声波加工的原理、变幅杆和刀具的设计以及加工工艺的研究,并将它应用在空间光学系统中光学元件的轻量化的加工。同时对加工后的表面微观特性——表面微裂纹和表面微应力进行具体测试分析,以解决在复杂的空间环境中元件的表面质量对使用精度和应力变形的影响,从而提出适于大型光学元件轻量化的工艺技术方法。  相似文献   

14.
The polymer has been proved to be nano machined by a vibrating tip in tapping mode of Atomic Force Microscope (AFM). The force between the tip and the surface is an important factor which determines success of the machining process. Controlling this force with high accuracy is the foundation of nanomachining in AFM tapping mode. To achieve a deeper understanding on this process, the tip is modeled as a driving oscillator with damping. Factors affecting the nano machining process are studied. The Hertz elastic contact theory is used to calculate the maximum contact pressure applied by the tip which is employed as a criterion to judge the deformation state of the sample. The simulation results show that: The driven amplitude can be used as a main parameter of controlling the machined depth. Sharper tips and harder cantilevers should be used for successful nanomachining with the vibrating tip. Under the same conditions, a larger tip radius will not only result in the machining error, but also lead to failure of the nanomachining process. The higher driving frequency will lead to a larger tapping force. However it cannot be used as a parameter to control the machined depth because of its narrow variation range. But it is a main error source for the nanomachining process in AFM tapping mode. Moreover, a larger Young's modulus polymer sample will induce a smaller machined depth, a larger maximum contact pressure and a bigger tapping force.  相似文献   

15.
 采用有限元方法对钼基体上不同厚度(20~1 000 μm)金刚石膜的热残余应力进行了全面的模拟与分析,得出了它们在膜内分布的等值线图,研究了金刚石膜厚度尺寸对整个膜内的最大主拉应力和界面处每个应力分量最大值的影响。结果表明:在整个膜内,最大主拉应力的位置出现在膜的表面、界面或侧面,其值随膜厚度的增加而增大;在界面处,最大轴向应力随膜厚度的增加而增大,而最大径向压应力、最大周向压应力和最大剪应力则随膜厚度的增加而减小,其中最大剪应力减幅较小;膜厚度越大时,以上各量随厚度增(减)的速度越慢。其结论对于在金刚石膜的制备中合理地选择厚度、有效地进行应力控制有一定的参考价值。  相似文献   

16.
A nanostructured surface layer was formed on a carbon steel by means of surface mechanical attrition treatment (SMAT). The microstructure of the surface layer of the SMATed sample was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness and residual stress distribution along the depth from the SMATed surface layer were measured at the same time. Fatigue behaviors of the carbon steel subjected to the SMAT process were investigated. A nanostructured layer with average grains size of ∼12.7 nm was formed, of which microhardness is more than twice as high as that in matrix and residual compressive stress can reach about −400 MPa with maximum depth of ∼600 μm. The fatigue strength of as-received sample is 267 MPa and that of SMATed sample is 302 MPa based on fatigue life 5 × 106 cycles. The SMAT process has improved the fatigue strength by as much as 13.1% for the carbon steel. It is shown that the SMAT is an effective method to render the material with the features, such as a nanostructured and work-hardened surface layer as well as compressive residual stresses, which can pronouncedly improve the fatigue strength of the carbon steel.  相似文献   

17.
S. To  W.B. Lee 《Applied Surface Science》2006,253(4):2165-2170
The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition.  相似文献   

18.
光学器件和光学测量系统的关键部件主要通过超精密加工制造。铝合金具有很多优势,通常用于光子产业。光学领域对铝合金使用和需求的不断增加,促进了在铸造过程中采用快速凝固技术对铝合金等级重新改良的发展。优异的微观结构和改进的机械和物理性能是新型铝合金等级的特点。目前主要问题在于采用金刚石车削时,由于在切削性方面缺乏对铝合金性能的充分研究,导致机械加工数据库非常有限。本文通过改变金刚石的切削参数,测量切齿安装距超过4km时金刚石刀具的磨损,研究了快速凝固铝合金RSA 905的切削性能。改变的机械加工参数为切削速度、进给速度和切削深度。结果表明切削速度对金刚石刀具的磨损影响最大。主轴转速为500rpm、进给速度为25mm/min、切削深度为15μm时,刀具磨损达到最大值12.2μm;主轴转速为1750rpm、进给速度为5mm/min、切削深度为5μm时,刀具磨损达到最小值2.45μm。通常,较高的切削速度、较低的进给速度和较短的切削深度的组合可以减少金刚石刀具磨损。建立了模型统计以分析金刚石刀具磨损。通过该模型可以生成磨损图,从而确定切削参数产生最小磨损的区域。结果证明,快速凝固铝是更好的选择,为机械工程师使用这种材料提供了参考。  相似文献   

19.
Three-dimensional molecular dynamics simulations of AFM-based nanometric cutting monocrystalline copper with pin tool radius of 0.713 nm are performed to investigate the effect of uncut chip thicknesses (0.1805 nm, 0.361 nm, 0.5415 nm, 0.722 nm, 0.9025 nm, 1.0875 nm, and 1.268 nm) on the depth of subsurface deformed layers. The EAM potential and Morse potential are utilized respectively to compute the interactions between workpiece atoms, the interactions between workpiece atoms and tool atoms. The single-atom potential energy variations of the workpiece atoms within the subsurface regions during the cutting process are obtained and analyzed through a deformation criterion to determine the deformation behaviors of subsurface atoms. The simulation results reveal that the depth of subsurface deformed layers is affected by the AFM pin tool's rake angle. At each uncut chip thickness, the AFM pin tool presents different negative rake angles, consequently different degrees of deformation in the subsurface take place.  相似文献   

20.
The compression of a single-layer graphene sheet in the “zigzag” and “armchair” directions has been investigated using the molecular dynamics method. The distributions of the xy and yx stress components are calculated for atomic chains forming the graphene sheet. A graphene sheet stands significant compressive stresses in the “zigzag” direction and retains its integrity even at a strain of ~0.35. At the same time, the stresses which accompany the compressive deformation of single-layer graphene in the “armchair” direction are more than an order in magnitude lower than corresponding characteristics for the “zigzag” direction. A compressive strain of ~0.35 in the “armchair” direction fractures the graphene sheet into two parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号