首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report on the defect properties of single-crystalline ZnO nanorods grown from solutions at temperatures below 90 °C. The nanorods can easily be doped by providing impurity precursors during growth. In the as-grown state the nanorods exhibit considerable lattice strain and distortions which compromise their electrical and optical properties. Upon annealing at moderate temperatures of <400 °C the lattice strain is converted into dislocation-type defects, and the dopant impurities become optically active. In the annealed state the near-bandgap photoluminescence quantum efficiency is improved more than 5 times and reaches ~16 % at room temperature. Thus with moderate annealing, interesting device applications become feasible for nanorods grown at T<90 °C.  相似文献   

2.
B-N codoped ZnO (ZnO:(B,N)) films were grown on quartz substrate by radio-frequency (rf) magnetron sputtering. The influence of post-annealing ambient on electrical and optical properties of ZnO:(B,N) films were investigated using Hall and Photoluminescence (PL) measurement, respectively. Electrical properties studies indicate that both post-annealing ZnO:(B,N) showed p-type conduction. However, compared with ZnO:(B,N) annealed in oxygen, the ZnO:(B,N) annealed in vacuum have low resistivity and high concentration. The PL spectra indicate that two new emission bands located at 3.303 and 3.208 eV originate from the recombination of A0X and FA related to N acceptor for the annealed p-ZnO:(B,N) in vacuum, but of A0X, FA related to Zn vacancy for the annealed p-ZnO:(B,N) in oxygen. The mechanism of influence of post-annealing on the electrical and optical properties of the ZnO:(B,N) film is discussed in this work.  相似文献   

3.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

4.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

5.
The temperature and pressure dependences of band-edge photoluminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of kBT with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively.  相似文献   

6.
The magnetron sputtering of Ag nanoparticles onto ZnO nanorod arrays is studied. The lateral faces of the nanorods are coated with nanoparticles at a much lower density as compared to the flat faces at comparable sputtering times. The silver density is high on the edges of the lateral faces of the nanorods. The plasmon absorption in the synthesized arrays of nanorods coated with individual Ag nanoparticles is maximal at 450?C500 nm. The appearance of local plasmon excitations increases the intensity of the multiphonon processes with the participation of ZnO polar modes in Raman spectra. The cross section of resonance Raman scattering for A 1(LO) phonon overtones increases with the equivalent Ag film thickness.  相似文献   

7.
The paper presents the photoluminescence investigation of zinc oxide thin films. A high quality ZnO films fabricated by dip-coating (sol–gel) method were grown on quartz wafers. The films with different thickness (number of layers) were annealed at different temperatures after the preparation process. It was found that high quality, transparent ZnO thin films could be produced on quartz substrates at relatively low annealing temperature (450–550  $^{\circ }\mathrm{C}$ ). The dependence of the ZnO thin film quality was studied by X-ray diffraction and atomic force microscopy techniques. Optical properties were investigated by classic and time-resolved photoluminescence (TRPL) measurements. Photoluminescence spectra allowed us to estimate energy of the free excitons, bond excitons and their longitudinal optical (LO) phonon replicas as a function of the annealing temperature. An innovative TRPL technique let us precisely measure the decay time of the free- and bond excitons’ in the real time. TRPL measurements as a function of temperature reveal a biexponential decay behavior with typical free/bound exciton decay constants of 970/5310 ps for the as-grown sample and 1380/5980 ps after annealing process. Presented spectra confirm high structural and optical quality of investigated films. We proved that the thermal treatment improve both optical and structural quality and extend the photoluminescence’s lifetimes. The obtained experimental results are important for identification of exciton’s peaks and their LO phonon replicas for the investigated ZnO films.  相似文献   

8.
Chitosan–ZnO nanostructures were prepared by chemical precipitation method using different concentration of zinc chloride and sodium hydroxide solutions. Nanorod-shaped grains with hexagonal structure for samples annealed at 300 °C and porous structure with amorphous morphology for samples annealed at 600 °C were revealed in SEM analysis. X-ray diffraction patterns confirmed the hexagonal phase ZnO with crystallite size found to be in the range of ~24.15–34.83 nm. Blue shift of UV–Vis absorption shows formation of nanocrystals/nanorods of ZnO with marginal increase in band gap. Photoluminescence spectra show that blue–green emission band at 380–580 nm. The chitosan–ZnO nanostructures used on surface of a glassy carbon electrode gives the oxidation peak potential at ~0.6 V. The electrical conductivity of chitosan–ZnO composites were observed at 2.1?×?10?5 to 2.85?×?10?5?S/m. The nanorods with high surface area and nontoxicity nature of chitosan–ZnO nanostructures observed in samples annealed at 300 °C were suitable as a potential material for biosensing.  相似文献   

9.
In this work, ZnO nanorods (NRs) were fabricated using a low cost chemical bath deposition (CBD) method. The effect of the potassium hydroxide concentration on the fabricated ZnO nanostructures was studied in depth. The optical, structure, and surface morphology properties of the fabricated ZnO nanostructures were investigated using Uv-vis spectroscopy, XRD, and SEM. The results indicate that the formation of hexagonally structured ZnO nanorods with different lengths and diameters was dependent on the KOH concentration. The sample prepared with 2 M of KOH was the best one for optoelectronic applications, since it has the smallest diameters. This sample was annealed at different temperatures (473 K–1073 K). Positron Annihilation Lifetime Spectroscopy was used to determine the defects in the ZnO nanorods. The results show that the positron mean lifetime (τm) decreased as the annealing temperature increased, which means that the overall defects in the ZnO nanorods decreased with increasing temperature. Consequently, higher performance semiconductor devices based on ZnO nanorods could be fabricated after high annealing of the ZnO nanorods.  相似文献   

10.
Diffusion of Li, Na and K into single-crystal substrates of ZnO was performed. We compare the results with ZnO epitaxial films doped with the respective elements during growth. The diffused and in-situ doped layers were studied using mass spectroscopy and low temperature photoluminescence spectroscopy. Li and Na are known to produce deep acceptor centers which give rise to shallow donor to deep acceptor recombinations in the visible spectral region. We will demonstrate that shallow acceptors are also introduced, having binding energies around 300 meV. A donor–acceptor pair recombination (zero phonon line at 3.05 eV) with LO phonon replica is observed. We further investigated bulk ZnO crystals which contained the deep Li acceptor by thermal treatments under H2 atmospheres. With increasing annealing temperature shallow donors are introduced as monitored by EPR while the EPR signal of the neutral Li acceptors decreases. Quite unexpectedly, the shallow Li acceptor centre which is not present in the as-grown state is also created. PACS 71.55.Gs; 78.55.Et; 76.30.Da  相似文献   

11.
We intend to search a new method to prepare high-quality and large-size p-ZnSe single crystal. In this study, ZnSe:Li3N single crystal is grown by a vertical Bridgman method using a closed double-crucible. The photoluminescence (PL) spectrum of the as-grown ZnSe:Li3N crystal at 8 K shows very strong donor–acceptor pair (DAP) and very weak exciton emissions. In order to activate doped Li3N, ZnSe:Li3N single crystal is annealed at high temperature in Zn-saturated atmosphere. By selecting suitable annealing conditions, a very strong I1 emission line related to shallow acceptor is observed. The capacitance–voltage (CV) characteristics indicate that the annealed ZnSe:Li3N single crystal is a p-type conduction. Furthermore, the acceptor concentration and ionization energy are estimated by examining the temperature dependences of the free-to-acceptor (FA) emission, the behaviors of Li and N are investigated, and the new emission at 2.34 eV is discussed.  相似文献   

12.
《Composite Interfaces》2013,20(8):733-742
Zinc thin films were deposited onto porous silicon (PSi) substrates by dc sputtering using a Zn target. These films were then annealed under flowing (6 l/min) oxygen gas environment in the furnace at 600°C for 2 h. Porous silicon is used as an intermediate layer between silicon and ZnO films and it provides a large area composed of an array of voids. The PSi samples were prepared using photoelectrochemical method on n-type silicon wafer with (111) and (100) orientation. To prepare porous structures, the samples were dipped into a mixture of HF:ethanol (1:1) for 5 min with current densities of 50 mA/cm2, and subjected to external illumination with a 500 W UV lamp. The surface morphology and the nanorod structure of the ZnO films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). We synthesized the ZnO nanorods with diameter of 80–100 nm without any catalysts or templates. The XRD pattern confirmed that the ZnO nanorods were of polycrystalline structure. The surface-related optical properties have been investigated by photoluminescence (PL) and Raman measurements at room temperature. Micro-Raman results showed that A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at 522 cm–1 and 530 cm–1, respectively. PL spectra peaks are clearly visible at 366 cm–1 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The PL spectral peak position in ZnO nanorods on porous silicon is blue-shifted with respect to that in unstrained ZnO (381 nm).  相似文献   

13.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain.  相似文献   

14.
Temperature-dependent polarization of the 4658 Å—3LO Raman line was studied together with that of the 4727 Å—2LO Raman line in resonance Raman scattering (RRS) in CdS. Temperature-dependent polarization is strongly related to the A-exciton in CdS as a resonant intermediate state. Experimental results are well understood when RRS around the A-exciton is considered as the inelastic scattering of exciton—polaritons by LO phonons.  相似文献   

15.
Zinc oxide (ZnO) nanorods were successfully grown on polyethylene naphthalate substrates with a seed layer using a wet chemical bath deposition method at a low temperature. Using various precursor concentrations, the diameter, length, and density of the ZnO nanorods were controlled, and their optical and crystallinity properties were investigated. X-ray diffraction and field emission scanning electron microscopy were used to examine the structure and morphology of the ZnO nanorods. The obtained ZnO nanorods were hexagonal and grew vertically from the substrate in the (002) direction along the c-axis. The low compressive strain values confirmed the high-quality crystal structure of the synthesized ZnO nanorods. A 0.050 M precursor concentration resulted in nanorods with a uniform diameter along their entire length and diameters ranging from 10 nm to 40 nm. The photoluminescence results indicated that the ZnO nanorods grown using a 0.050 M precursor concentration exhibited the sharpest and most intense PL peaks in the UV range compared with the other samples. Therefore, the precursor concentration considerably influenced the growth of the ZnO nanorods. These ZnO nanorods can be greatly applied for the development of flexible, elastic electronic, and optoelectronic devices.  相似文献   

16.
We report on the defect-dominated light emission and ultraviolet (UV) photoconductivity characteristics of ZnO nanorods (NRs) fabricated using a facile, cost-effective, and catalyst-free thermal decomposition route under varying reaction temperatures. The morphological and structural studies reveal the formation of homogeneous quality nanorods in large scale at the highest reaction temperature of 600 °C. The luminescence feature of the nanorods is dominated by the defect related emission over the typical band edge emission. The variation of band-edge and native defect-related emission response of the samples has been correlated to the morphology and microstructure. In photoconductivity studies, the IV characteristics of the ZnO NRs prepared at different reaction temperatures in dark and under UV illumination (λ=365 nm) follow the power law, i.e., IαV r . An enhanced ultraviolet photodetection has been observed in the nanorods fabricated at the highest reaction temperature of 600 °C. The sample prepared at highest reaction temperature of 600 °C exhibits UV photosensitivity value (photo-to-dark current ratio) of around 1.18×103, which is much higher in magnitude compared to that of the samples prepared at lower reaction temperatures. The enhanced photoconductivity may be assigned to the development of uniformity and homogeneity of the nanorods. Further development of such ZnO nanostructures can form the basis of promising prototype luminescent and UV photodetecting devices.  相似文献   

17.
《Current Applied Physics》2015,15(5):580-583
We investigated the effects of the curing temperature on physical properties of hydrothermal synthesized yttrium-doped ZnO (YZO) nanorods. Compared to the as-grown sample, the c-axis preference (i.e., the peak intensity of x-ray diffraction at the (002) Bragg angle) was much enhanced after curing in vacuum at 200 °C. In addition, 200-°C-cured YZO nanorods showed a significant decrease in the number of metastable oxygen bonds. These resulted in both the increase in ultra-violet emission and the decrease in oxygen-related deep-level emission.  相似文献   

18.
In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.  相似文献   

19.
Structural and optical properties of ZnO film by plasma-assisted MOCVD   总被引:2,自引:0,他引:2  
Wang  X.  Yang  S.  Wang  J.  Li  M.  Jiang  X.  Du  G.  Liu  X.  Chang  R.P.H. 《Optical and Quantum Electronics》2002,34(9):883-891
High quality ZnO film was deposited by plasma-assisted metal-organic chemical vapor deposition (MOCVD). We observed a dominant peak at 34.6° due to (0 0 2) ZnO, which indicated that the growth of ZnO film was strongly C-oriented. The full-width at half-maximum (FWHM) of the -rocking curve was 0.56° indicating relatively small mosaicity. Photoluminescence (PL) measurement was performed at both room temperature and low temperature. Ultraviolet (UV) emission at 3.30 eV was found with high intensity at room temperature while the deep level transition was weakly observed at 2.513 eV. The ratio of the intensity of UV emission to that of deep level emission was as high as 193, which implied high quality of ZnO film. From PL spectrum at 10 K, we observed A-exciton emission at 3.377 eV and D°X bound exciton transition at 3.370 eV. The donor–acceptor transition and LO phonon replicas were observed at 3.333 and 3.241 eV respectively. Raman scattering was performed in back scattering at room temperature. The E2, A1(LO) and A1(TO) mode was seen at 437.6, 575.8 and 380 cm–1 respectively. In comparison with Raman spectrum of ZnO powder, we found that ZnO film was nearly free of strain, which indicated high crystal quality.  相似文献   

20.
We examined the temperature-dependent electrical, optical, and structural properties of VO2 on ZnO nanorods with different lengths in the temperature range from 30 to 100 °C. ZnO nanorods with a uniform length were grown on Al2O3 substrates using a metal organic chemical vapor deposition, and subsequently, VO2 was ex-situ deposited on ZnO nanorods/Al2O3 templates using a sputtering deposition. The optical properties of the VO2/ZnO nanorods were measured simultaneously with direct current (DC) resistance using the reflectivity of an infrared (IR) laser beam with a wavelength of 790 nm. The local structural properties around V atoms of VO2/ZnO nanorods were simultaneously measured with the DC resistance using x-ray absorption fine structure at the V K edge. Direct comparison of the temperature-dependent resistance, IR reflectivity, and local structure reveals that an optical phase transition first occurs, a structural phase transition follows, and an insulator-to-metal transition finally appears during heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号