首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.  相似文献   

2.
We present a simple system for CD4 and CD8 counting for point-of-care HIV staging in low-resource settings. Automatic sample preparation is achieved through a dried reagent coating inside a thin (26 μm) counting chamber, allowing the delayed release of fluorochrome conjugated monoclonal antibodies after the filling of the chamber with whole blood by capillary flow. A custom-built image cytometer is used to capture fluorescence images representing more than 1 μl of blood. The thin layer of blood in combination with the large image area allows the use of whole blood from a finger prick without the need for dilution, lysis or cell enrichment. Automatic cell counting of CD4(+) and CD8(+) T-lymphocytes correlates well with results obtained by flow cytometry.  相似文献   

3.
J Sun  M Li  C Liu  Y Zhang  D Liu  W Liu  G Hu  X Jiang 《Lab on a chip》2012,12(20):3952-3960
This work reports on a passive double spiral microfluidic device allowing rapid and label-free tumor cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. A numerical model is developed to simulate the Dean flow inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation for optimizing the operating conditions. Results from separating tumor cells (MCF-7 and Hela) spiked into whole blood indicate that 92.28% of blood cells and 96.77% of tumor cells are collected at the inner and the middle outlet, respectively, with 88.5% tumor recovery rate at a throughput of 3.33 × 10(7) cells min(-1). We expect that this label-free microfluidic platform, driven by purely hydrodynamic forces, would have an impact on fundamental and clinical studies of circulating tumor cells.  相似文献   

4.
Practical HIV diagnostics are urgently needed in resource-limited settings. While HIV infection can be diagnosed using simple, rapid, lateral flow immunoassays, HIV disease staging and treatment monitoring require accurate counting of a particular white blood cell subset, the CD4(+) T lymphocyte. To address the limitations of current expensive, technically demanding and/or time-consuming approaches, we have developed a simple CD4 counting microfluidic device. This device uses cell affinity chromatography operated under differential shear flow to specifically isolate CD4(+) T lymphocytes with high efficiency directly from 10 microliters of unprocessed, unlabeled whole blood. CD4 counts are obtained under an optical microscope in a rapid, simple and label-free fashion. CD4 counts determined in our device matched measurements by conventional flow cytometry among HIV-positive subjects over a wide range of absolute CD4 counts (R(2) = 0.93). This CD4 counting microdevice can be used for simple, rapid and affordable CD4 counting in point-of-care and resource-limited settings.  相似文献   

5.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

6.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

7.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

8.
Liu YJ  Guo SS  Zhang ZL  Huang WH  Baigl D  Xie M  Chen Y  Pang DW 《Electrophoresis》2007,28(24):4713-4722
An integrated smart microfluidic device consisting of nickel micropillars, microvalves, and microchannels was developed for specific capture and sorting of cells. A regular hexagonal array of nickel micropillars was integrated on the bottom of a microchannel by standard photolithography, which can generate strong induced magnetic field gradients under an external magnetic field to efficiently trap superparamagnetic beads (SPMBs) in a flowing stream, forming a bed with sufficient magnetic beads as a capture zone. Fluids could be manipulated by programmed controlling the integrated air-pressure-actuated microvalves, based on which in situ bio-functionalization of SPMBs trapped in the capture zone was realized by covalent attachment of specific proteins directly to their surface on the integrated microfluidic device. In this case, only small volumes of protein solutions (62.5 nL in the capture zone; 375 nL in total volume needed to fill the device from inlet A to the intersection of outlet channels F and G) can meet the need for protein! The newly designed microfluidic device reduced greatly chemical and biological reagent consumption and simplified drastically tedious manual handling. Based on the specific interaction between wheat germ agglutinin (WGA) and N-acetylglucosamine on the cell membrane, A549 cancer cells were effectively captured and sorted on the microfluidic device. Capture efficiency ranged from 62 to 74%. The integrated microfluidic device provides a reliable technique for cell sorting.  相似文献   

9.
The ability to control the deposition and location of adherent and non-adherent cells within microfluidic devices is beneficial for the development of micro-scale bioanalytical tools and high-throughput screening systems. Here, we introduce a simple technique to fabricate poly(ethylene glycol)(PEG) microstructures within microfluidic channels that can be used to dock cells within pre-defined locations. Microstructures of various shapes were used to capture and shear-protect cells despite medium flow in the channel. Using this approach, PEG microwells were fabricated either with exposed or non-exposed substrates. Proteins and cells adhered within microwells with exposed substrates, while non-exposed substrates prevented protein and cell adhesion (although the cells were captured inside the features). Furthermore, immobilized cells remained viable and were stained for cell surface receptors by sequential flow of antibodies and secondary fluorescent probes. With its unique strengths in utility and control, this approach is potentially beneficial for the development of cell-based analytical devices and microreactors that enable the capture and real-time analysis of cells within microchannels, irrespective of cell anchorage properties.  相似文献   

10.
Microfluidic adhesion-based cell separation systems are of interest in clinical and biological applications where small sample volumes must be processed efficiently and rapidly. While the ability to capture rare cells from complex suspensions such as blood using microfluidic systems has been demonstrated, few methods exist for rapid and nondestructive release of the bound cells. Such detachment is critical for applications in tissue engineering and cell-based therapeutics in contrast with diagnostics wherein immunohistochemical, proteomic, and genomic analyses can be carried out by simply lysing captured cells. This paper demonstrates how the incorporation of four-arm amine-terminated poly(ethylene glycol) (PEG) molecules along with antibodies within alginate hydrogels can enhance the ability of the hydrogels to capture endothelial progenitor cells (EPCs) from whole human blood. The hydrogel coatings are applied conformally onto pillar structures within microfluidic channels and their dissolution with a chelator allows for effective recovery of EPCs following capture.  相似文献   

11.
The development of integrated microsystems capable of interrogation, characterization and sorting of mammalian cells is highly significant for further advancement of point-of-care diagnostics and drug discovery fields. The present study sought to design a novel strategy for releasing antibody-bound cells through electrochemical disruption of the underlying antibody (Ab) layer. A microsystem for selective capture and release of cells consisted of an array of individually addressable gold microelectrodes fabricated on a glass substrate. Poly(ethylene glycol) (PEG) hydrogel photolithography was employed to make the glass regions non-fouling, thus, ensuring selective localization of proteins and cells on the microelectrodes. The gold surfaces were decorated with anti-CD4 Ab molecules using standard alkanethiol self-assembly and carbodiimide coupling approaches. The Ab-functionalized electrodes selectively captured model T-lymphocytes (Molt-3 cells) expressing CD4 antigen while minimal cell adhesion was observed on PEG hydrogel-modified glass substrates. Importantly, application of a reductive potential (-1.2V vs. Ag/AgCl reference electrode) resulted in release of surface-bound T-cells from the electrode surface. Cyclic voltammetry and fluorescence microscopy were employed to verify that the detachment of captured T-cells was indeed due to the electrochemical disruption of the underlying alkanethiol-Ab layer. In the future, the cell sorting approach described here may be combined with microfluidic delivery to enable Ab-mediated capture of T-lymphocytes or other cell types followed by release of select cells for downstream gene expression studies or re-cultivation.  相似文献   

12.
A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.  相似文献   

13.
J Zhu  T Nguyen  R Pei  M Stojanovic  Q Lin 《Lab on a chip》2012,12(18):3504-3513
Isolation of cells from heterogeneous mixtures is critically important in both basic cell biology studies and clinical diagnostics. Cell isolation can be realized based on physical properties such as size, density and electrical properties. Alternatively, affinity binding of target cells by surface-immobilized ligands, such as antibodies, can be used to achieve specific cell isolation. Microfluidics technology has recently been used in conjunction with antibody-based affinity isolation methods to capture, purify and isolate cells with higher yield rates, better efficiencies and lower costs. However, a method that allows easy release and collection of live cells from affinity surfaces for subsequent analysis and detection has yet to be developed. This paper presents a microfluidic device that not only achieves specific affinity capture and enrichment, but also enables non-destructive, temperature-mediated release and retrieval of cells. Specific cell capture is achieved using surface-immobilized aptamers in a microchamber. Release of the captured cells is realized by a moderate temperature change, effected via integrated heaters and a temperature sensor, to reversibly disrupt the cell-aptamer interaction. Experimental results with CCRF-CEM cells have demonstrated that the device is capable of specific capture and temperature-mediated release of cells, that the released cells remain viable and that the aptamer-functionalized surface is regenerable.  相似文献   

14.
Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T‐cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV‐induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95 % purity of CD4 and CD8 T‐cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti‐CD4 and anti‐TNF‐α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence “halo” after immunofluorescent staining and could be retrieved by site‐specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.  相似文献   

15.
Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T‐cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV‐induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95 % purity of CD4 and CD8 T‐cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti‐CD4 and anti‐TNF‐α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence “halo” after immunofluorescent staining and could be retrieved by site‐specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.  相似文献   

16.
Microchip-based immunomagnetic detection of circulating tumor cells   总被引:2,自引:0,他引:2  
Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Compared to the commercially available CellSearch? system, fewer (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at an optimal blood flow rate of 10 mL h(-1)) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave? tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe(3)O(4) magnetic nanoparticles (Veridex Ferrofluid?) conjugated to anti-epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescent labelled anti-cytokeratin, DAPI and anti-CD45. Subsequent immunofluorescence images were taken for the captured cells, followed by comprehensive computer aided analysis based on fluorescence intensities and cell morphology. Rare cancer cells (from ~1000 cells down to ~5 cells per mL) with very low tumor cell to blood cell ratios (about 1?:?10(7) to 10(9), including red blood cells) were successfully detected. Cancer cell capture rates of 90% and 86% were demonstrated for COLO205 and SKBR3 cells, respectively.  相似文献   

17.
Immunoaffinity microfluidic devices have recently become a popular choice to isolate specific cells for many applications. To increase cell capture efficiency, several groups have employed capture beds with nanotopography. However, no systematic study has been performed to quantitatively correlate surface nanopatterns with immunoaffinity cell immobilization. In this work, we controlled substrate topography by depositing close-packed arrays of silica nanobeads with uniform diameters ranging from 100 to 1150 nm onto flat glass. These surfaces were functionalized with a specific antibody and assembled as the base in microfluidic channels, which were then used to capture CD4+ T cells under continuous flow. It is observed that capture efficiency generally increases with nanoparticle size under low flow rate. At higher flow rates, cell capture efficiency becomes increasingly complex; it initially increases with the bead size then gradually decreases. Surprisingly, capture yield plummets atop depositions of some particle diameters. These dips likely stem from dynamic interactions between nanostructures on the substrate and cell membrane as indicated by roughness-insensitive cell capture after glutaraldehyde fixing. This systematic study of surface nanotopography and cell capture efficiency will help optimize the physical properties of microfluidic capture beds for cell isolation from biological fluids.  相似文献   

18.
Cytokine secretion by leukocytes is an important indicator of immune response to pathogens and therefore has significant implications in disease diagnostics. Given heterogeneity of leukocyte subsets and the ability of multiple cell subsets to secrete the same cytokines, connecting cytokine production to a specific leukocyte subset is a distinct challenge. In the present paper we describe a strategy combining antibody (Ab)-based affinity cell separation and surface plasmon resonance (SPR) for capturing human CD4 T-cells and for label-free detection of cell-secreted interferon (IFN)-γ – an important inflammatory cytokine. Human blood was introduced into a flow chamber modified with anti-CD4 Abs resulting in capture of CD4+ T-cells. After mitogenic activation of cells inside the flow chamber, culture medium was routed onto an SPR chip modified with monoclonal IFN-γ Abs. SPR signal observed in this experiment correlated with cytokine production by T-cells. The strategy of combining SPR detection with cell purification may be used in the future for label-free, sensitive detection of multiple cytokines or proteins secreted by the desired cell subset.  相似文献   

19.
Colonization of cancer cells at secondary sites, a decisive step in tumor metastasis, is strongly dependent on the formation of metastatic microenvironments regulated by intrinsic single-cell metabolism traits. Herein, we report a single-cell microfluidic platform for high-throughput dynamic monitoring of tumor cell metabolites to evaluate tumor malignancy. This microfluidic device empowers efficient isolation of single cells (>99 %) in a squashed state similar to tumor extravasation, and employs enzyme-packaged metal–organic frameworks to catalyze tumor cell metabolites for visualization. The microfluidic evaluation was confirmed by in vivo assays, suggesting that the platform allowed predicting the tumorigenicity of captured tumor cells and screening metabolic inhibitors as anti-metastatic drugs. Furthermore, the platform efficiently detected various aggressive cancer cells in unprocessed whole blood samples with high sensitivity, showing potential for clinical application.  相似文献   

20.
Aptamers have recently emerged as an excellent alternative to antibodies because of their inherent stability and ease of modification. In this paper, we describe the development of an aptamer-based surface for capture of cells expressing CD4 antigen. The glass or silicon surfaces were modified with amine-terminated silanes and then modified with thiolated RNA aptamer against CD4. Modification of the surface was first characterized by ellipsometry to demonstrate assembly of biointerface components and to show specific capture of recombinant CD4 protein. Subsequently, surfaces were challenged with model lymphocytes (cell lines) that were either positive or negative for CD4 antigen. Our experiments show that aptamer-functionalized surfaces have similar capture efficiency to substrates containing anti-CD4 antibody. To mimick capture of specific T-cells from a complex cell mixture, aptamer-modified surfaces were exposed to binary mixtures containing Molt-3 cells (CD4+) spiked into Daudi B cells (CD4-). 94% purity of CD4 cells was observed on aptamer-containing surfaces from an initial fraction of 15% of CD4. Given the importance of CD4 cell enumeration in HIV/AIDS diagnosis and monitoring, aptamer-based devices may offer an opportunity for novel cell detection strategies and may yield more robust and less expensive blood analysis devices in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号