首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From the experimentally determined borderline of precipitation in the pM'-pH diagram the stability constants of the mononuclear and polynuclear species of cerium hydroxide have been determined graphically. The stability constants found are log*beta(1) = -8.1, log*beta(2) = -16.3, log*beta(3) = -26.0, log*beta(5,3) = -32.8 and log*K(s0) = 20.1. These values refer to freshly prepared precipitates, at room temperature and an ionic strength of 1, and are precise to about 0.2 log units.  相似文献   

2.
From the precipitation borderlines in the pBi'-pH diagram, determined experimentally under CO(2)-free conditions, the stability constants of bismuth hydroxide, bismuthoxynitrate and bismuthoxyperchlorate have been established. The following values have been found Nitrate-medium: Perchlorate-medium: log *K(SO)(OH) = 5.2, log *K(SO)(OH) = 5.2; log *K(SO)(NO(3)) = -1.2, log*K(SO)(ClO(4)) = -0.9; log *beta(2) = -4.0, log *beta(2) = -4.1; log *beta(3) = -10.0, log *beta(3)= -9.9; log *beta(4) = -21.5, log *beta(4) = -21.5; log *beta(1,0,1) = 1.2, log *beta(1,0,1) = 3.5. The constants refer to precipitates equilibrated for 30 min, prepared at room temperature (23 +/- 0.5 degrees) in sodium perchlorate or sodium nitrate medium with an ionic strength of 1.00 +/- 0.01. Concerning error propagation it is stated that pBi' values calculated with these constants will have a standard deviation of about 0.1 log unit.  相似文献   

3.
From the precipitation borderline in the pM'-pC(H) diagram, determined experimentally under CO(2)-free conditions, stability constants for the mononuclear species of erbium hydroxide have been established. The values found were log ( *)beta(1) = -6.3, log ( *)beta(2) = -14.5, log ( *)beta(3) = -23.1, log ( *)beta(4) = -36.8 and log ( *)K(0) = 18.0. The data refer to precipitates prepared at room temperature (21.5 +/- 0.5 degrees ) in sodium perchlorate medium with an ionic strength of 1. The formation of polynuclear hydroxide complexes has been considered and rejected as unlikely to occur.  相似文献   

4.
Kragten J  Decnop-Weever LG 《Talanta》1987,34(10):861-864
From the precipitation borderline in the pLa'-pC(H) diagram the stability constants for (mononuclear) lanthanum-hydroxide species have been established. The presence of polynuclear species could not be demonstrated and seems unlikely. The values found were log *beta(1) = -8.6, log *beta(2) = -17.9, log *nu(3) = -27.3 and log *K(s0) = 22.8. The data refer to precipitates prepared under CO(2)-free conditions at room temperature (21.5 +/- 0.5 degrees ) in sodium perchlorate medium with an ionic strength of 1.  相似文献   

5.
The formation of hydroxo acetate complexes of iron (III) ion has been studied at 25 degrees C in 3 M (Na)ClO4 ionic medium by measuring with a glass electrode the hydrogen ion concentration in Fe(ClO4)3-HClO4-NaAc mixtures (Ac = acetate ion). The acetate/metal ratio ranged from 0 to 6, the metal concentration varied from 0.005 to 0.06 M, whereas [H+] was stepwise decreased from 0.1 M to initial precipitation of hydroxo-acetates. This occurred, depending on the acetate/metal ratio, in the -log[H+] range 1.85-2.7. The potentiometric data are consistent with the presence of Fe3(OH)3Ac3(3+), Fe2(OH)2(4+), Fe3(OH)4(5+), Fe3(OH)5(4+) and, as minor species, of Fe3(OH)2Ac6+, FeAc2+, FeAc2+, FeOH2+ and Fe(OH)2+. Previously published EMF measurements with redox and glass half-cells were recalculated to refine the stability constants of FeAc2+, FeAc2+ and Fe3(OH)2Ac6+. Formation constants *beta pqr for pFe(3+)+(q-r)H2O + rHAc reversible Fep(OH)(q-r)(Ac)r3p-q + qH+ (in parenthesis the infinite dilution value): log*beta 111 = -1.85 +/- 0.02 (-0.67 +/- 0.15), log*beta 122 = -3.43 +/- 0.02 (-1.45 +/- 0.15); log*beta 363 = -5.66 +/- 0.03 (-2.85 +/- 0.40), log*beta 386 = -8.016 +/- 0.006 (-4.06 +/- 0.15), log*beta 220 = -2.88 +/- 0.02 (-2.84 +/- 0.05), log*beta 340 = -6.14 +/- 0.18 (-6.9 +/- 0.4), log*beta 350 = -8.44 +/- 0.09 (-7.65 +/- 0.15).  相似文献   

6.
Salvado V  Ribas X  Valiente M 《Talanta》1992,39(1):73-76
Complex formation between Fe(III) and tartaric acid (H(2)L) has been studied in O.5M NaNO(3) medium at 25 degrees by potentiometry at pH 4.5-11. The following complex species and corresponding values of the stability constants (charges omitted) are proposed: 2Fe + 2L + 5H(2)O --> Fe(2)(OH)(5)L(2) + 5H(+); log* beta(-522) = 4.95 Fe + L + 3H(2)O --> Fe(OH)(3)L + 3H(+); log* beta(-311) = -1.55 Fe + L + 5H(2)O --> Fe(OH)(5)L + 5H(+); log* beta(-511) = -21.2 These results are in good agreement with those reported for this system in acid. The results may be presented as the degeneration of the "core + link" mechanism observed in the acidic zone. Structures are suggested for the complex species formed.  相似文献   

7.
Kragten J  Decnop-Weever LG 《Talanta》1980,27(12):1047-1050
From the precipitation borderline in the pM′—pH diagram, determined experimentally under CO2-free conditions, the stability constants of the mononuclear and polynuclear species of gadolinium hydroxide have been established. The values found are log*β1 = −7.3, log*β2 = −14.6, log*β3 = −21.9, log*β4,3 = −19.0 and log *Ks0 = 17.0. They refer to fresh precipitates, prepared at room temperature in sodium perchlorate medium with an ionic strength of 1.  相似文献   

8.
Kragten J  Decnop-Weever LG 《Talanta》1979,26(12):1105-1109
From the precipitation borderline in the pM′—pH diagram, determined experimentally under CO2-free conditions, the stability constants of the mononuclear and polynuclear species of samarium hydroxide have been established. The values found are log*β1 = −7.5, log*β2 = −15.0, log*β3 = −22.7, logβ4, 3 = −19.5 and log*Ks0 = 17.5. They refer to fresh precipitates, prepared at room temperature in sodium perchlorate medium with an ionic strength of 1.  相似文献   

9.
Misumi S  Aihara M 《Talanta》1972,19(4):549-557
Cadmium, zinc and manganese(II) iodide complexes have been studied polarographically in acetonitrile and the electrode reactions for these complexes discussed. The overall stability constants of the iodide complexes of these metal ions were evaluated and corrected for the effect of the ion-pairing electrolyte. The values for log beta(4) of CdI(4)(2-) and ZnI(4)(2-) are 26.2 and 18.4 respectively and the values found for the Mn(II) iodide complex are log beta(1) = 3.5, log beta(2) = 5.6, log beta(3) = 7.8, log beta(4)= 10.0, log beta(5) = 12.2 and log beta(6) = 14.4. Within certain limits, the wave-height for each complex is proportional to the metal concentration.  相似文献   

10.
Furia E  Porto R 《Annali di chimica》2003,93(12):1037-1043
The complexation equilibria between Be2+ and the hydrogen salicylate (HL-) ions have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 3 M NaClO4. The concentrations of metal (CM) and ligand (CL) were varied between 10(-3) and 0.03 M and 2 x 10(-3) and 0.03 M, respectively, while 1 < or = CL/CM < or = 3. The hydrogen ion concentration ranged from 10(-3) to 10(-5.3) M when basic salts start to precipitate. The equilibria can be written in the general form as: pBe2+ + rHL- <==> Be(p)H(-q) (HL)r(2p-r-q) + qH+, log beta(pqr). The experimental data have been explained with the formation of BeHL+ (log beta101 = 1.46 +/- 0.05), BeL (log beta111 = -0.897 +/- 0.018), BeL2(2-) (log beta122 = -3.746 +/- 0.021), Be2(OH)L2- (log beta232 = -5.23 +/- 0.09), Be3(OH)3L3(3-) (log beta363 = -14.39 +/- 0.12). The uncertainties represent 3sigma. The predominant complex in the whole concentration range studied is the uncharged mononuclear species BeL.  相似文献   

11.
Khurana SC  Gupta CM 《Talanta》1973,20(8):789-791
The electrode reduction reaction of cadmium malate complexes at various pH values and ligand concentrations has been studied. At pH < pK(1) the complex Cd(H(2)A), log K = 0.57, exists. At pH > pK(2) Cd(A(2-))(n) species exist, log beta(1) = 1.9, log beta(2) = 2.8 log beta(3) = 3.4. At intermediate pH the complex Cd(HA) exists.  相似文献   

12.
Lubal P  Havel J 《Talanta》1997,44(3):457-466
Uranyl (M)-selenate (L) complex equilibria in solution were investigated by spectrophotometry in visible range and potentiometry by means of uranyl ion selective electrode. The formation ML and ML(2) species was proved and the corresponding stability constants calculated were: log beta(1) = 1.57(6) +/- 0.01(6), log beta(2) = 2.42(3) +/- 0.01(3) (I = 3.0 mol 1(-1) Na(ClO(4), SeO(4)) (spectrophotometry) at 298.2 K. Using potentiometry the values for infinite dilution (I --> 0 mol 1(-1)) were: log beta(1) = 2.64 +/- 0.01, log beta(2) 3.4 at 298.2 K. Absorption spectra of the complexes were calculated and analysed by deconvolution technique. Derivative spectrophotometry for the chemical model determination has also been successfully applied.  相似文献   

13.
Karadakov B  Kantcheva D  Nenova P 《Talanta》1968,15(6):525-534
The reaction between iron(III) and Methylthymol Blue (MTB or H(6)A) has been investigated by spectrophotometry. It has been established that iron(III) and MTB form two complexes with compositions iron(III): MTB = 1:1 and 1:2. The 1:1 complex is stable in acidic medium containing excess of iron, and the 1:2 complex is stable in slightly acidic or alkaline media containing excess of MTB. The absorption maxima are at 610 mmu (1:1) and 515 mmu (1:2), the molar absorptivities being 1.73 +/- 0.01 x 10(4) and 3.21 +/- 0.05 x 10(3) respectively. The nature of the two complexes at pH 6 and the stability constants have been determined: log beta(11) = 20.56 +/- 0.07, log beta(112) = 43.29 +/- 0.09, log beta(12) = 6.66 +/- 0.05.  相似文献   

14.
Perera WN  Hefter G 《Inorganic chemistry》2003,42(19):5917-5923
A detailed investigation of the iron(III)-cyanide and iron(III)-hydroxide systems has been made in NaClO(4) media at 25 degrees C, using combined UV-vis spectrophotometric and pH-potentiometric titrations. For the Fe(III)/OH- system, use of low total Fe(III) concentrations (< or =10 microM) and a wide pH range (0 < or = pH < or = 12.7) enabled detection of six mononuclear complexes, corresponding to the following equilibria: Fe3+(aq)+rH2O<=>Fe(OH)r(3-r)+(aq) + rH(+)(aq), where r = 1-6 with stability constants (log *beta 1r) of -2.66, -7.0, -12.5, -20.7, -30.8, and -43.4, respectively, at I = 1 M (NaClO(4)). It was also found to be possible to measure, for the first time, stability constants for most of the following equilibria: Fe3+(aq)+qCN-(aq)<=>Fe(CN)q(3-q)+(aq), despite a plethora of complicating factors. Values of log beta(1q) = 8.5, 15.8, 23.1, and 38.8 were obtained at I = 1.0 M (NaClO(4)) for q = 1-3 and 6, respectively. No reliable evidence could be obtained for the intermediate (q = 4 or 5) complexes. Similar results were obtained for both systems at I = 0.5 M(NaClO(4)). Spectra for the individual mononuclear complexes detected for Fe(III) with OH- and CN- are reported. Attempted measurements on the Fe(II)/CN- system were unsuccessful, but values of log beta(16)(Fe(CN)(6)(4-)) = 31.8 and log beta(15)(Fe(CN)(5)(3-) approximately 24 were estimated from well established electrode potential and other data.  相似文献   

15.
Experiments performed previously with cerium(III), samarium and gadolinium have been extended to conditions of high pC(H) in order to discover any amphoteric character. Up to pC(H) 14.6, the solubility of gadolinium hydroxide and of cerium(III) hydroxide does not increase, so the previously reported constants hold up to this pC(H). The solubility of samarium hydroxide increases at high pC(H), and the value log ( *)beta(4) = -36.7 can be deduced. This should be added to the previously reported set, now applicable up to pC(H) 14.5.  相似文献   

16.
ESI mass spectrometry was used to investigate the europium complexation by tridentate ligands L identical with 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines (DATP) that have shown unique separation properties of actinides(III) from lanthanides(III) in nitric acid solutions. Complexes of three ligands, namely methyl (DMTP), n-propyl (DnPTP), and iso-propyl (DiPTP), have been investigated in acidic solutions to check the aqueous-phase stability of Eu(L)(3)(3+) ions identified previously in the solid state. The data obtained show, first, the presence of stable Eu(L)(3)(3+) ions with DnPTP (log beta(3)(app) = 12.0 +/- 0.5) and DiPTP (log beta(3)(app) = 14.0 +/- 0.6) in methanol/water (1:1 v/v) solutions under pH range 2.8-4.6 and, second, a mechanism whereby alkyl moieties contribute to a self-assembling process leading to the formation of Eu(L)(3)(3+) ions. Other complexes such as Eu(L)(2)(3+) ions are only observed for DnPTP (log beta(2)(app) = 6.7 +/- 0.5) and DMTP (log beta(2)(app) = 6.3 +/- 0.1) and Eu(L)(3+) only for DMTP (log beta(1)(app) = 2.9 +/- 0.2). The log beta(n)(app) values for the Eu(L)(n)(3+) (n = 1-3) complexes were determined at pH 2.8. Better insight was given in this study concerning the role of the hydrophobic exterior of the ligands for the design of a new range of extracting agents.  相似文献   

17.
Reilly SD  Neu MP 《Inorganic chemistry》2006,45(4):1839-1846
A significant fraction of plutonium that is soluble in environmental waters and other aqueous solutions can be present as complexes of plutonyl, PuO2(2+). Few thermodynamic data are available for this ion, representing a problematic gap in plutonium chemistry and in the forecasting of radionuclide behavior under contamination and nuclear repository conditions. To address this need and more accurately determine the stoichiometry and stability of the basic hydrolytic products, we completed complimentary potentiometric and spectrophotometric studies of plutonium(VI) hydrolysis over the concentration range of 10(-2) to 10(-5) M Pu(VI). Dinuclear hydroxide species (PuO2)2(OH)2(2+) and (PuO2)2(OH)4(0)(aq) with hydrolysis constants log beta(2,2) = -7.79 +/- 0.20 and log beta(4,2) = -19.3 +/- 0.5 are indicated in all experiments of millimolar Pu(VI), 0.10 M NaNO3 solutions at 25 degrees C. At lower Pu(VI) concentrations, at and below 10(-4) M, the monomeric species PuO2OH+ and PuO2(OH)2(0)(aq) form with hydrolysis constants of log beta(1,1) = -5.76 +/- 0.07 and log beta(2,1) = -11.69 +/- 0.05, respectively. Distinct optical absorbance bands at 842 and 845 nm are reported for the mononuclear and dinuclear first hydrolysis species. Standard hydrolysis constants at zero ionic strength were calculated from the experimentally determined constants using the specific ion interaction theory. The Pu(VI) hydrolysis species and constants are compared with results from previous studies for plutonium and uranium. Major differences between uranyl and plutonyl hydrolysis are described.  相似文献   

18.
The synthesis of a new, more water soluble derivative of TREN-Me-3,2-HOPO (tris[(3-hydroxy-1-methyl-2-oxo-1,2- didehydropyridine-4-carboxamido)ethyl]amine) is presented. The synthesis starts with the condensation reaction of (N-methoxyethylamino)acetonitrile hydrochloride and oxalyl chloride to give 3,5-dichloro-N-(methoxyethyl)-2(1H)-pyrazinone. The 3-position is readily substituted with a benzyloxy group, and the pyrazinone is converted to ethyl 3-(benzyloxy)-N-(methoxyethyl)-2(1H)-pyridinone-4-carboxylate by a Diels-Alder cycloaddition with ethyl propiolate. Basic deprotection of the ester followed by activation, coupling to tren, and acidic deprotection of the benzyl groups gives the ligand TREN-MOE-3,2-HOPO (tris[(3-hydroxy-1-(methoxyethyl)- 2-oxo-1,2-didehydropyridine-4-carboxamido)ethyl]amine). The gadolinium complex of TREN-MOE-3,2-HOPO was prepared by metathesis, starting from gadolinium chloride. The solubility of the new metal complex is significantly enhanced. The four protonation constants (determined by potentiometry) for TREN-MOE-3,2-HOPO (log Ka1 = 8.08, log Ka2 = 6.85, log Ka3 = 5.81, log Ka4 = 4.98) are virtually identical to those reported for the parent ligand. The stability constants for the gadolinium complex of TREN-MOE-3,2-HOPO determined by potentiometry (log beta 110 = 19.69(2), log beta 111 = 22.80(2)) and by spectrophotometry (log beta 110 = 19.80(1), log beta 111 = 22.88(1), log beta 112 = 25.88(1)) differ slightly from those for the parent ligand; this follows from a change in the complexation model in which a new diprotonated species, [Gd(TREN-MOE-3,2-HOPO)(H)2]2+, was included. The presence of this extra species was demonstrated by factor analysis, comparison of spectral data, and nonlinear least-squares refinement. Significant formation of this species is observed between pH 3 and pH 1.5.  相似文献   

19.
Ion-selective electrodes and optodes based on the anticrown ionophore mercuracarborand-3 (MC-3) exhibit excellent selectivity to halide ions but suffer from a low upper detection limit because of very strong complexation in the sensing phase. In this work, we have successfully improved the upper detection limit and widened the working range of chloride selective electrode based on MC-3 by introducing 1-decanethiol into the membrane cocktail. With an assumed 1:2 stoichiometry between chloride and MC-3 the apparent complex formation constant was reduced from log beta = 13.4 as reported for the membrane without the addition of 1-decanethiol to log beta = 12.13, log beta = 10.84 and log beta = 5.67 with the addition of a 1:1, 1:2 and 1:4 molar ratio of 1-decanethiol to MC-3. Besides these values, obtained with the sandwich membrane method, similar shifts in the measuring range of thin optode film responses to lower chloride concentrations were observed as well. The selectivity of the modified membrane was found to be very good, with hydroxide and the other halides: bromide and iodide, as the main interferences. Based on these results, corresponding iodide selective electrodes were prepared that showed a near-Nernstian iodide slope, rather than a cationic slope as observed without thiol additive.Jonoselektywne elektrody i optody stosujace antykoronowy jonofor [9]merkuracarborand-3 (MC-3) charakteryzuja sie doskona?a selektywno?cia w stosunku do jonów halogenków lecz wskutek silnego kompleksowania w fazie receptora maja ograniczony zakres górnej granicy oznaczalno?ci. W przedstawionej pracy poszerzono zakres stosowalno?ci dzieki wprowadzeniu 1-dekanotiolu do membrany zawierajacej MC-3. Przy za?ozonej stechiometrii kompleksu chlorek-MC-3 równej 1:2 sta?a tworzenia kompleksu zosta?a obnizona, z warto?ci log beta = 13,4 (w przypadku membrany bez dodatku 1-dekanotiolu) do warto?ci log beta = 12,13; log beta = 10,84 i log beta = 5,67 (po dodaniu 1-dekanotiolu) dla stosunków molowych stezeń-1-dekanotiol:MC-3 wynoszacych odpowiednio 1:1, 1:2 i 1:4. Ponadto oprócz tych danych otrzymanych metoda warstwowej membrany, podobne przesuniecie zakresu pomiarowego obserwowano w przypadku ma?ych stezeń chlorków dla cienkowarstwowej optody. Selektywno? ? modyfikowanej membrany by?a dobra, przy czym g?ównymi interferentami by?y jony bromkowe, jodkowe i wodorotlenkowe. W oparciu o te wyniki skonstruowano elektrode czu?a na jony jodkowe, charakteryzujaca sie nachyleniem anionowym charakterystyki bliskim Nernstowskiemu, a nie kationowym wykazywanym w nieobecno?ci tiolu.  相似文献   

20.
Elenkova NG  Popova E 《Talanta》1975,22(10-11):925-929
The reaction of magnesium or aluminium ions with Eriochrome Cyanin RC in alkaline medium leads to formation of a complex of type ML. The molar absorptivities of the complexes are 1.90 +/- 0.14 x 10(3)1. mole(-1).cm(-1) at 570 nm for the magnesium complex and 3.87 +/- 0.04 x 10(4) at 555 nm for the aluminium complex. The conditional stability constants of the complexes were determined at various pH values, and hence the overall formation constants, which were found to be log beta(111) = 8.65 +/- 0.06 for MgOHL, log beta(121) = 22.29 +/- 0.05 for AlH(2)L, log beta(111) = 18.25 +/- 0.14 for AlHL, and log beta(101) = 13.66 +/- 0.01 for AlL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号