首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Le XC  Cullen WR  Reimer KJ 《Talanta》1994,41(4):495-502
An arsenic specific detection system utilizing on-line microwave digestion and hydride generation atomic absorption spectrometry (MD/HGAAS) is described for arsenic speciation by using high performance liquid chromatography (HPLC). Both ion exchange chromatography and ion pair chromatography have been studied for the separation of arsenite, arsenate, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB). When the commonly used mobile phases, phosphate and carbonate buffers at pH 7.5, are used on an anion exchange column, arsenite and AB co-elute. However, selective determination of these two arsenic compounds can be achieved by using the new detection system. Partial separation between arsenite and AB can be achieved by increasing the mobile phase pH to 10.3 and by using a polymer based anion exchange column. The detection limit obtained by using anion exchange chromatography with MD/HGAAS detection is approximately 10 ng/ml (or 200 pg for a 20-mul sample injection) for arsenite, DMAA and AB, 15 ng/ml (or 300 pg) for MMAA, and 20 ng/ml (or 400 pg) for arsenate. Complete separation of the five arsenic compounds is achieved on a reversed phase C18 column by using sodium heptanesulfonate as ion pair reagent. Comparable resolution between chromatographic peaks is obtained by using MD/HGAAS detection and inductively coupled plasma mass spectrometry (ICPMS) detection.  相似文献   

2.
Brisbin JA  B'hymer C  Caruso JA 《Talanta》2002,58(1):133-145
A gradient anion exchange chromatographic technique was developed for the separation of arsenobetaine (AsB), arsenocholine (AsC), arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in one chromatographic run. This technique used low residue ammonium carbonate buffer and the inductively coupled plasma-mass spectrometry (ICP-MS) chromatograms showed little baseline drift. Gradient elution improved peak shape and peak separation. The separation was completed in approximately 27 min with low detection limits (0.017-0.029 mug As kg(-1)). Baseline resolution of all the arsenic species evaluated was achieved when the concentration of AsC was less than approximately 12.5 mug As kg(-1). This technique was successfully applied to different extracts of a standard reference material, TORT-2, and lobster tissue. AsB was found to be the major arsenic species present. AsC, DMAA, MMAA and As(V) were also found, although MMAA was not detected in all of the TORT-2 extracts. Two unknown peaks found may be due to the presence of arsenosugars or other arsenic species. Discrepancy between extraction recoveries previously determined using flow injection-ICP-MS and the high-performance liquid chromatography-ICP-MS was observed in some cases. The differences may be due to the extraction technique and/or conditions at which the extractions were performed.  相似文献   

3.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2-4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45-90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 +/- 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 microg/L). The concentrations in the urine (3179 +/- 2667 microg/L) and blood (44 +/- 19 microg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 +/- 99 microg/kg, kidney: 565 +/- 193 microg/kg, muscle: 680 +/- 224 microg/kg) and wool samples (10470 +/- 5690 microg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep.  相似文献   

4.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2–4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45–90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 ± 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 μg/L). The concentrations in the urine (3179 ± 2667 μg/L) and blood (44 ± 19 μg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 ± 99 μg/kg, kidney: 565 ± 193 μg/kg, muscle: 680 ± 224 μg/kg) and wool samples (10 470 ± 5690 μg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep. Received: 29 February 2000 / Revised: 26 April 2000 / Accepted: 1 May 2000  相似文献   

5.
The vertical profies of inorganic arsenic [As(III)+As(V)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were investigated at four sampling stations in the Pacific Ocean and a sampling station in the southern Tasman Sea. In addition, the concentrations of those compounds in surface waters of the Pacific Ocean and Tasman Sea have been determined. The vertical profiles of inorganic arsenic showed the low concentrations in both the surface and deep/bottom zones. The depleted concentrations in the surface zone varied from 1000 to 1700 ng dm−3 and that in the deep/bottom zone varied from 1300 to 2050 ng dm−3. The maximum concentrations that varied from 1500 to 2450 ng dm−3 were usually observed at a depth of about 2000 m. Both MMAA and DMAA were observed throughout the water column at sampling stations in the north-western and equatorial regions of the Pacific Ocean. At the sampling station in the central northern Pacific gyre, DMAA was the only methylated arsenic compound observed throughout the water column. On the contrary, at the sampling station in the southern Tasman Sea, the only detected methylated arsenic compound throughout the water column was MMAA. Their vertical profiles showed maximum concentrations in the surface water which abruptly dropped with depth from 0 to 200 m. The concentration in the surface water was close to 10 ng dm−3 for MMAA and varied from 27 to 185 ng dm−3 for DMAA. At depths greater than 100 m, MMAA and DMAA were at comparable concentrations which varied from 0.7 to 14 ng dm−3. The low inorganic arsenic concentration in the surface zone was due to biological activity. This activity resulted in the uptake of As(V) and subsequent reduction and methylation to MMAA and DMAA. DMAA was the main predominant arsenic compound resulting from biological activity in surface waters. The low inorganic arsenic concentrations in the deep and bottom zones were likely to be caused by the adsorption of dissolved inorganic arsenic onto sinking particulates rich in iron and manganese oxides.  相似文献   

6.
Regulating arsenic species in drinking waters is a reasonable objective, since the various species have different toxicological impacts. However, developing robust and sensitive speciation methods is mandatory prior to any such regulations. Numerous arsenic speciation publications exist, but the question of robustness or ruggedness for a regulatory method has not been fully explored. The present work illustrates the use of anion exchange chromatography coupled to ICP-MS with a commercially available "speciation kit" option. The mobile phase containing 2 mM NaH(2)PO(4) and 0.2 mM EDTA at pH 6 allowed adequate separation of four As species (As(III), As(V), MMAA, DMAA) in less than 10 min. The analytical performance characteristics studied, including method detection limits (lower than 100 ng L(-1) for all the species evaluated), proved the suitability of the method to fulfill the current regulation. Other parameters evaluated such as laboratory fortified blanks, spiked recoveries, and reproducibility over a certain period of time produced adequate results. The samples analyzed were taken from water utilities in different areas of the United States and were provided by the U.S. EPA. The data suggests the speciation setup performs to U.S. EPA specifications but sample treatment and chemistry are also important factors for achieving good recoveries for samples spiked with As(III) as arsenite and As(V) as arsenate.  相似文献   

7.
Hydride generation-flame atomic-absorption spectrometry (HG-FAAS) was used as a continuous detection system for arsenic in the eluate from high-performance liquid chromatography (HPLC). Four arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) were detected separately with the HPLC-HG-FAAS system equipped with an anion-exchange column. When hijiki (Hizikia fusiforme) extract was examined, arsenate was found predominantly and arsenite and dimethylarsinate were also detected. Liver supernatant fraction obtained from mice administered orally with arsenite was also studied with the HPLC-HG-FAAS system equipped with a gel permeation column. In addition to free or low-molecular-weight ligand-bound arsenic, high-molecular-weight protein-bound arsenic fractions were also detected.  相似文献   

8.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
High-performance liquid chromatography (h.p.l.c.) is used for separation of arsenite, arsenate, monomethylarsinate (MMA) and dimethylarsonate (DMA) followed by continuous sodium tetrahydroborate reduction and atomic absorption spectrometric detection. Sample preconcentration, offering improved detection limits for the individual species and the removal of matrix interferences, is achieved with a pellicular anion-exchange column. The arsenic species are then separated on a strong anion-exchange column placed in series with the preconcentration column. Detection limits of 2 ng (as arsenic) for arsenite, arsenate and MMA, and 1 ng for DMA. Results for arsenic species in soil waters and commercial bottle waters are given.  相似文献   

10.
Study on simultaneous speciation of arsenic and antimony by HPLC-ICP-MS   总被引:1,自引:0,他引:1  
A method was developed for the simultaneous speciation of arsenic and antimony with HPLC-ICP-MS using C30 reversed phase column. Eight kinds of arsenic compounds (As(III), As(V), monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenobetaine (AB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium (TeMA)), Sb(III) and Sb(V) were simultaneously separated by the special mobile phase containing ammonium tartrate. Especially for the species of organic As, a C30 column was better than a C18 column in the effect of separation. Limits of detection (LOD) for these elements were 0.2 ng ml−1 for the species of each As, and 0.5 ng ml−1 for the species of each Sb, when a 10 μl of sample was injected, respectively. The proposed method was applied to a hot spring water and a fish sample.  相似文献   

11.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L(-1) NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11-0.15 ng (20 microL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

12.
A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained.  相似文献   

13.
An automated method for the determination of arsenic acid (AsV), arsenous acid (AsIII), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) was developed using a commercial available flow injection hydride generation system. By carrying out the hydride generation in selected acid media the determination of As(III) alone, of MMAA and DMAA by sum and by different sensitivities, and of all four species is possible.  相似文献   

14.
The vertical profiles of inorganic arsenic [As(III)+As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), inorganic germanium and monomethylgermanium (MMGe) were investigated at three sampling stations in the Pacific Ocean. In addition, the concentrations of these species in various surface waters have also been determined. The vertical profile of both inorganic arsenic and germanium displayed low concentrations, 1100 to 1450 ng dm3 for inorganic arsenic and <0.7 to 2 ng dm3 for inorganic germanium, in the surface zone. The concentrations of inorganic arsenic increased with depth to maximum concentrations that varied from 1500 to 2200 ng dm3 at a depth of 2000 m and then slowly decreased to concentrations that varied from 1300 to 1900 ng dm3 at a depth of 5000 m. On the other hand, the vertical profiles of inorganic germanium displayed a relatively constant concentration (4 to 8 ng dm3) from a depth of 2000 m to 5000 m. These vertical profiles of inorganic germanium were linearly correlated with those of silicate with a Ge/Si molar ratio of 0.715×106. Both MMAA and DMAA displayed maximum concentrations in surface water and abruptly dropped with depth from 0 to 200 m. The concentration in surface water was 12 ng dm3 for MMAA and varied from 48 to 185 ng dm3 for DMAA. At depths >200 m, MMAA and DMAA were generally at comparable concentrations of about 3 ng dm3. In the case of MMGe, it was uniformly distributed throughout the water column at a concentration of approximately 16 ng dm3, indicating that MMGe was not involved in the biogeochemical cycling of inorganic germanium. In deep waters (>200 m), the concentrations of both inorganic arsenic and germanium increased from the southern Tasman Sea to the north. The increase in inorganic arsenic concentration was linearly correlated with that of phosphate and the increase in inorganic germanium concentration was linearly correlated with that of silicate, with apparent δAs/δP and δGe/δSi molar ratios of 4.53×103 and 0.73×106, respectively. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Six arsenic species, arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine, were separated by coupled column ion chromatography using carbonate and nitric acid as eluents, and were detected by inductively coupled plasma mass spectrometry. Coupling of an anion column with a cation column made the simultaneous determination of both the cationjic and the anionic arsenic species possible by ion chromatography. Extremely low detection limits, below 0.2 μg/1 (as arsenic), were obtained for all the species studied.  相似文献   

16.
载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水砷(Ⅲ)的研究   总被引:6,自引:0,他引:6  
制备了一种载铁(β-FeOOH)球形棉纤维素吸附剂,并用于地下水中As(Ⅲ)的去除.吸附剂对As(Ⅴ)和As(Ⅲ)在吸附容量、选择性和速率等方面都具有良好的性能,无需预氧化As(Ⅲ),其适用pH范围宽,不必调节原水的pH.吸附剂孔隙度大,机械强度好,活性成分铁的载入量高,吸附As(Ⅲ)的活性好.Langmuir和Freundlich方程能较好地描述吸附平衡方程,其吸附动力学符合Lagergren准二级方程.吸附As(Ⅲ)的最佳pH范围为6-9.SO42-和Cl-等干扰离子均不影响As(Ⅲ)的去除.柱吸附实验表明,即使在较高流速和As(Ⅲ)进水浓度下,吸附剂对As(Ⅲ)的去除依然具有很高的穿透容量和饱和容量.吸附剂可以用NaOH溶液再生,洗脱和再生效率较高.活性成分β-FeOOH形态稳定,柱实验和再生时铁均无泄漏.  相似文献   

17.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L–1 NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11–0.15 ng (20 μL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

18.
Summary Capillary zone electrophoresis has been used to separate arsenite, arsenate, dimethylarsinic acid, and phenyl-,p-aminophenyl-, ando-aminophenylarsinic acids. Identification and quantification of the arsenic species at mg L−1 levels was possible by use of direct UV detection at 200 nm. The relative standard deviation (n=7) ranged from 0.97 to 1.52% for migration times and from 2.08 to 4.31% for peak areas. A method for rapid separation of inorganic arsenic species was also developed; by use of this method arsenite and arsenate could be separated within 2 min. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

19.
Arsenic speciation in contaminated soils   总被引:4,自引:0,他引:4  
A method for arsenic speciation in soils is developed, based on extraction with a mixture of 1 mol l(-1) of phosphoric acid and 0.1 mol l(-1) of ascorbic acid, and further measurement with the coupling liquid chromatography (LC)-ultraviolet (UV) irradiation-hydride generation (HG)-inductively coupled plasma mass spectrometry (ICP/MS). The stability of the arsenic species in the extracts is also studied. The speciation method applied to several Spanish agricultural contaminated soils from the Aznalcollar zone shows that arsenate is the main species in all the soils analysed and that in some samples arsenite and methylated species could also be detected. The determination of the "pseudototal" arsenic in these soils, obtained by applying extraction with aqua regia (ISO Standard 11466), is also carried out. Both the speciation method and the aqua regia method are applied to several certified reference materials (CRMs) in which total arsenic content is certified. Finally, the same LC-UV-HG coupling with atomic fluorescence spectrometry (AFS) detection reveals to be a valid coupling system to perform arsenic speciation in the soils according to its fair quality parameters and easy utilisation.  相似文献   

20.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号