首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electroneutral Cl(-)/HCO(3)(-) exchange, present at the apical membrane of rabbit gallbladder epithelium, apparently is converted into a stilbene- and dipyridamole-sensitive, nonrectifying, approximately 5-pS anion channel after the exchange is directly inhibited (inhibitors tested: hydrochlorothiazide (HCTZ), phlorizin, phenylglyoxal and diphenylamine-2-carboxylic acid (DPC)). In intact tissue, in the absence of CO(2)/HCO(3)(-) in the media, the opening of these channels causes an approximately 7-mV depolarization of the apical membrane. This has been shown to be a constant index of the total Cl(-) conductance (G(Cl)) activated. The effect of exogenous and endogenous CO(2)/HCO(3)(-) on the depolarization has now been investigated in the intact tissue by conventional microelectrodes. The anion exchange has been measured radiochemically. The presence of exogenous or endogenous CO(2)/HCO(3)(-) reduces the depolarization induced by HCTZ, phlorizin and DPC from approximately 7 to 3 mV, but 10(-4) mol/l acetazolamide restores the full depolarization. Response time, S(0.5) and Hill number are unchanged in each case. The way of bicarbonate replacement is irrelevant. The depolarization generated by phenylglyoxal, which covalently binds to the transport site of the exchanger and prevents HCO(3)(-) binding, is unaffected by CO(2)/HCO(3)(-) presence. HCO(3)(-) binding to the transport site is suggested to partially hinder the conversion of the exchanger into the channel.  相似文献   

2.
Equilibria in the U(VI)H(2)OCO(2)(g) system in 0.5M sodium perchlorate medium at 25 degrees have been studied. By using thermal tensing spectrophotometry (TLS) and a very low total concentration of U(V1) (4 x 10(-6)M) information could be obtained on equilibria involving UO(2)(CO(3))(2-)(2) without complications due to formation of the trimer (UO(2))(3)(CO(3))(6-)(6). The experimental data allowed a precise determination of the equilibrium constant log K(3) = 6.35 +/- 0.05 for the reaction UO(2)(CO(3))(2-)(2) + CO(2-)(3) right harpoon over left harpoonright harpoon over left harpoon UO(2)(CO(3))(4-)(3). The interpretation of TLS data is briefly discussed, as well as the potential use of this technique for studies of the speciation of trace elements in natural water systems.  相似文献   

3.
Mason S  Hamon R  Zhang H  Anderson J 《Talanta》2008,74(4):779-787
The effect of potential chemical constraints on the performance of two relatively new soil P testing methods, anion exchange membrane (AEM) and diffusive gradients in thin films (DGT), were evaluated. Exposures to ranges of anion (Cl(-), NO(3)(-), SO(4)(2-) and HCO(3)(-)) concentrations relevant to agricultural soils had minimal effect on P recoveries using DGT. It has also been shown previously that DGT P recoveries are unaffected by varying pH (3-9). In contrast, increasing NO(3)(-) and SO(4)(2-) concentrations in solution reduced the recovery of P using the resin method (anion exchange membrane, AEM) by 24% at 50mgL(-1) NO(3)(-) and by 47% at 12mgL(-1) SO(4)(2-) when the P concentration of the test solution was 2mgL(-1). Phosphorus sorption by the resin decreased with increasing Cl(-) concentrations until there was a 100% decrease at 300mgL(-1) Cl(-) when the P concentration of the test solution was 2mgL(-1) and a 92% reduction at 700mgL(-1) Cl(-) when the P concentration of the test solution was 0.2mgL(-1). There was also a small but significant effect of carbonate species on P sorption to the resin at carbonate concentrations that can occur in agricultural soils. Changing the pH of the solution had minimal effects on the resin P measurements in solutions above pH 4, but below pH 4, resin P measurements decreased dramatically. A poor coefficient of determination for the regression fit between DGT and resin measurements on eight agricultural soils suggested that these two methods are measuring different amounts of P for different soils. Resin P measurements increased significantly, but non-uniformly across soils, when the soil:water ratio was decreased but this did not result in an improved relationship with DGT P. There was a minimal effect on measured P using either Cl(-) or HCO(3)(-) as counter ions on the resin.  相似文献   

4.
Daneţ AF  David V 《Talanta》1992,39(10):1299-1306
The partition constants of Cadion, i.e., 1-(p-nitro-phenyl)-3-(p'-azobenzene)-triazene, of its complex with the methylmercuric ion, and of methylmercury chloride were determined in the system toluene/aqueous phase containing 40 vol.% methyl alcohol; they have the values of 4.3 x 10(3), 3.0 x 10(3), and 2.6 respectively. The reagent has an absorption maximum at 406 nm, whereas the methylmercury complex at 460 nm. The K(HR) value corresponding to the H(+) + R(-) right harpoon over left harpoon HR equilibrium is 10(10.85), HR being the reagent molecule and H belongs to the NH of the triazenic group (NNNH). The K(ext) value corresponding to the equilibrium H(3)CHg(+) + (HR)(o) right harpoon over left harpoon (H(3)CHgR)(o) + H(+) is 1.0, where the "o" indicates the species present in the organic phase. The reagent/H(3)CHg(+) combination ratio is 1/1. The formation constant of the methylmercury complex, K(H(3)CHgR), which corresponds to the equilibrium H(3)CHg(+) + R(-) right harpoon over left harpoon H(3)CHgR, has a value of 10(10.8) as estimated by means of two different methods. The IR spectra allowed some conclusions to be drawn concerning the formation of the complex. The complex is stable up to 180 degrees , and the reagent up to 140 degrees . The molar absorptivity is of 3.46 x 10(4) 1.mole(-1).cm(-1) and the H(3)CHg(+) can be determined in the range 0.025-4 ppm. The determination is highly selective.  相似文献   

5.
Three cobalt(III) complexes of the macrocyclic tetraamine [3(5)]adamanzane (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane) were isolated as salts. The X-ray crystal structures were solved for the compounds [Co([3(5)]adz)(CO(3))]AsF(6) (1b), [Co([3(5)]adz)(HCO(3))]ZnBr(4).H(2)O (2a), and [Co([3(5)]adz)(SO(4))]AsF(6).H(2)O (3a). The coordination geometry around the cobalt(III) ion is a distorted octahedron with the inorganic ligands at cis-positions. Complex 2 is the second example of a cobalt(III) complex for which the X-ray structure shows a chelate binding mode of the hydrogen carbonate entity. The pK(a) value of the [Co([3(5)]adz)(HCO(3))](2+) ion (2) was determined spectrophotometrically to be 0.27 (25 degrees C, I = 5.0 M). The protonation appears to occur at the noncoordinated carbonyl oxygen atom of the carbonate group, with hydrogen bonding to the crystal water molecule. Evidence is presented for this oxygen atom as the site of protonation in solution as well. In 5.0 M CF(3)SO(3)H a slow reaction of the carbonato complex, quantitatively yielding the [Co([3(5)]adz)(H(2)O)(2)](3+) ion, was observed. k(obs) = 7.9(1) x 10(-)(6) s(-)(1) at 25 degrees C.  相似文献   

6.
The kinetics and mechanism of peroxymonocarbonate (HCO(4)(-)) formation in the reaction of hydrogen peroxide with bicarbonate have been investigated for the pH 6-9 range. A double pH jump method was used in which (13)C-labeled bicarbonate solutions are first acidified to produce (13)CO(2) and then brought to higher pH values by addition of base in the presence of hydrogen peroxide. The time evolution of the (13)C NMR spectrum was used to establish the competitive formation and subsequent equilibration of bicarbonate and peroxymonocarbonate following the second pH jump. Kinetic simulations are consistent with a mechanism for the bicarbonate reaction with peroxide in which the initial formation of CO(2) via dehydration of bicarbonate is followed by reaction of CO(2) with H(2)O(2) (perhydration) and its conjugate base HOO(-) (base-catalyzed perhydration). The rate of peroxymonocarbonate formation from bicarbonate increases with decreasing pH because of the increased availability of CO(2) as an intermediate. The selectivity for formation of HCO(4)(-) relative to the hydration product HCO(3)(-) increases with increasing pH as a consequence of the HOO(-) pathway and the slower overall equilibration rate, and this pH dependence allows estimation of rate constants for the reaction of CO(2) with H(2)O(2) and HOO(-) at 25 °C (2 × 10(-2) M(-1) s(-1) and 280 M(-1) s(-1), respectively). The contributions of the HOO(-) and H(2)O(2) pathways are comparable at pH 8. In contrast to the perhydration of many other common inorganic and organic acids, the facile nature of the CO(2)/HCO(3)(-) equilibrium and relatively high equilibrium availability of the acid anhydride (CO(2)) at neutral pH allows for rapid formation of the peroxymonocarbonate ion without strong acid catalysis. Formation of peroxymonocarbonate by the reaction of HCO(3)(-) with H(2)O(2) is significantly accelerated by carbonic anhydrase and the model complex [Zn(II)L(H(2)O)](2+) (L = 1,4,7,10-tetraazacyclododecane).  相似文献   

7.
The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.  相似文献   

8.
The reaction between Ru(bpy)(2)Cl(2) (bpy=2,2'-bipyridine) and di-2-pyridylketone-p-nitrophenylhydrazone (dpknph) in refluxing ethanol gave [Ru(bpy)(2)(dpknph)]Cl(2) in good yield. Optical measurements on [Ru(bpy)(2)(dpknph)]Cl(2) in non-aqueous media revealed the presence of two interlocked electronic states due to conformational changes associated with the hydrazone moiety of [Ru(bpy)(2)(dpknph)]Cl(2). The equilibrium distribution of the high-energy beta-conformation associated with the high-energy electronic state and the low-energy alpha-conformation associated with the low-energy electronic state is solvent and solute dependent controlled by the solvent-solute and solute-solute interactions. The interplay between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) allowed calculations of the extinction coefficients of electronic states by forcing the equilibrium to shift to one conformation using chemical stimuli. Extinction coefficients of 56000+/-2000 and 48500+/-2000 M(-1) cm(-1) were calculated in DMSO for the beta- and alpha-conformations of [Ru(bpy)(2)(dpknph)]Cl(2), respectively, using excess HgCl(2) in DMSO. Thermo-optical measurements on [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO confirmed the interconversion between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) and gave changes in enthalpy (DeltaH(?)) of -35.5+/-4.0 and 13.0+/-0.5 kJ mol(-1), entropy (DeltaS(?)) of -126.9+/-20 and 45.2+/-4.5 kJ mol(-1), and free energy (DeltaG(?)) of 2.31+/-0.2 and -0.48+/-0.2 kJ mol(-1) in the absence and presence of NaBH(4) at 295 K. The high values for the extinction coefficients and low values and sensitivity of the activation parameters for the interconversion between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO to solution composition allowed for the use of this system ([Ru(bpy)(2)(dpknph)]Cl(2) and surrounding solvent or solute molecules) as a spectrophotometric sensor for a variety of chemical stimuli that include metal ions. Group 12 metal ions in concentrations as low as 1.00x10(-8) M can be detected and determined using [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO in the presence and absence of NaBH(4).  相似文献   

9.
Efficient syntheses are reported for incorporating trimetal units of the type M(3)(dpa)(4)(2+) (M = Cr, Co, Ni, and dpa = 2,2'-dipyridylamide) into polyalkynyl assemblies to give the prototypical bis-phenylacetylide complexes M(3)(dpa)(4)(CCPh)(2). Reactions of M(3)(dpa)(4)Cl(2) with LiCCPh have led only to mixtures of products which cocrystallize forming materials of the composition M(3)(dpa)(4)(CCPh)(x)()Cl(2)(-)(x)(). Here we report that acetonitrile complexes [M(3)(dpa)(4)(NCCH(3))(2)](PF(6))(2) react cleanly with LiCCPh in MeCN to afford the desired target molecules in 40-60% yield and in excellent purity. Isolation of the mixed ligand complex [Co(3)(dpa)(4)(NCCH(3))(CCPh)]PF(6) has been accomplished, which suggests that these reactions are stepwise and that it will be possible to synthesize mixed acetylide complexes (i.e., M(3)(dpa)(4)(CCR)(CCR')) via this method.  相似文献   

10.
Zaborska W  Leszko M 《Talanta》1986,33(9):769-774
The extraction of HC1 by the secondary amine (B), known as Amberlite LA-2, dissolved in 1,2-dichloroethane and the aggregation of BHC1 have been studied by using a two-phase potentiometric titration technique. The experimental data, treated by a general minimizing program, indicate dimerization: 2 BHClright harpoon over left harpoon(BHCl)(2). The equilibrium constant of this reaction was calculated. The extraction of ZnCl(2), CdCl(2) and PbCl(2) from 0.2,0.5, 1.0 and 2.0M HCl, and 1MNaCl by Amberlite LA-2 hydrochloride (BHCl), dissolved in 1,2-dichloroethane, has been studied. The complexes (BHCl)(2)ZnCl(2), (BHCl)(2)CdCl(2) and (BHCl)(2)PbCl(2) were found to exist, irrespective of the composition of the aqueous phase. The formation constant of the first was calculated.  相似文献   

11.
The mechanism and kinetics of bicarbonate-catalyzed oxidations of sulfides by H(2)O(2) at the aqueous /cationic micellar interface have been investigated. The general term surfoxidant is introduced to describe the combination of an ionic surfactant with a reactive counterion that is itself an oxidant or activates an oxidant from the bulk solution to form an oxidant counterion. It is shown that the new catalytic cationic surfoxidant CTAHCO(3) (cetyltrimethylammonium bicarbonate) significantly enhances the overall oxidation rates as compared to the addition of bicarbonate salts to CTACl and CTABr, for which the halide counterions must undergo equilibrium displacement by the oxidant anion (peroxymonocarbonate, HCO(4)(-)). General equations based on the classic pseudophase model have been derived to account for the preequilibrium reaction in the aqueous and micellar phases, and the resulting model can be used to describe any micellar reaction with associated preequilibria. Rate constants and relevant equilibrium constants for HCO(4)(-) oxidations of aryl sulfides at micellar surfaces have been estimated for CTAHCO(3), CTACl, and CTABr. The second-order rate constants in the Stern layer (k(2)(m)) for sulfide oxidations by HCO(4)(-) are estimated to be approximately 50-fold (PhSEtOH) and approximately 180-fold (PhSEt) greater than the background rate constant k(m)(0) for oxidation by H(2)O(2) at the micellar surface. The estimated values of k(2)(m) are lower than the corresponding values in water by a factor of 20-70 depending on the substrate, but the high local concentration of the bicarbonate activator in the surfoxidant and the local accumulation of substrate as a result of strong binding to the micelle lead to a net increase in the observed reaction rates. Comparisons of CTAHCO(3)-activated peroxide to other highly reactive oxidants such as peroxymonosulfate (HSO(5)(-)) in aqueous surfactant media suggest a wide variety of potential applications for this green oxidant.  相似文献   

12.
The kinetics and mechanism of the chlorine(III)-HOBr reaction were studied by the stopped-flow method under acidic conditions, pH 1.0-3.0, in 1.0 M NaClO(4) and at 25.0 degrees C. The overall redox process occurs in two consecutive steps via the formation of the BrClO(2) intermediate. The electron transfer reactions are coupled with bromine hydrolysis, the formation of the tribromide ion, and the protolytic equilibrium of chlorine(III). On the basis of simultaneous evaluation of the kinetic traces, the following rate constants were obtained for the redox steps: HClO(2) + HOBr right harpoon over left harpoon BrClO(2) + H(2)O, k(3) = (3.34 +/- 0.02) x 10(4) M(-1) s(-1), k(-3) = (3.5 +/- 1.3) x 10(3) s(-1); BrClO(2) + ClO(2)(-)<==>2ClO(2) + Br(-), k(4) = (2.9 +/- 1.0) x 10(7) M(-1) s(-1). The second step was practically irreversible under the conditions applied, and the value of k(-4) could not be determined. The equilibrium constant for the formation of BrClO(2), K(3) = 9.5 M(-1), was calculated from the kinetic results, and it was confirmed that this species is a very powerful oxidant. The redox potential was also estimated for the BrClO(2) + e(-) = Br(-) + ClO(2) reaction: epsilon(0) approximately 1.70 V.  相似文献   

13.
The equilibria and kinetics of substitution of the 5,6-dimethylbenzimidazole at the alpha site of beta-(N-methylimidazolyl)cobalamin by N-methylimidazole have been investigated, and the product, bis(N-methylimidazolyl)cobalamin, has been characterized by visible and 1H NMR spectroscopies. The equilibrium constant for (N-MeIm)Cbl+ + N-MeIm right harpoon over left harpoon (N-MeIm)2Cbl+ was determined by 1H NMR spectroscopy (9.6 +/- 0.1 M(-1), 25.0 degrees C, I = 1.5 M (NaClO4)). The observed rate constant for this reaction exhibits an unusual inverse dependence on N-methylimidazole concentration, and it is proposed that substitution occurs via a base-off solvent-bound intermediate. Activation parameters typical for a dissociative ligand substitution mechanism are reported at two different N-MeImT concentrations, 5.00 x 10(-3) M (DeltaH++ = 99 +/- 2 kJ x mol(-1), DeltaS++ = 39 +/- 5 J x mol(-1) x K(-1), DeltaV++ = 15.0 +/- 0.7 cm3 x mol(-1), and 1.00 M (DeltaH++ = 109.4 +/- 0.8 kJ x mol(-1), DeltaS++ = 70 +/- 3 J x mol(-1) x K(-1), DeltaV++ = 16.8 +/- 1.1 cm3 x mol(-1)). According to the proposed mechanism, these parameters correspond to the equation of (N-MeIm)2Cbl+ and the ring-opening reaction of the alpha-DMBI of (N-MeIm)Cbl+ to give the solvent-bound intermediate in both cases, respectively.  相似文献   

14.
3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.  相似文献   

15.
In this research, we investigated the effect of dynamic anion adsorption/exchange on the surface charging property of Mg(2)AlClLDH and Mg(2)AlCO(3)LDH particles that show the average zeta potential of 41 and 34 mV in the as-prepared suspension, respectively. The addition of NaCl up to 3x10(-3) M in the suspension does not obviously affect the zeta potential of both LDHs, which can be attributed to the less affinity of Cl(-) to LDH. The introduction of Na(2)CO(3) severely reduces the zeta potential at the CO(3)(2-) concentration higher than 1x10(-4) M, and to the negative value in both LDH systems at ca. 2x10(-3) M, which is presumably resulted from the exchange and the re-orientation of CO(3)(2-) in a tilt/vertical style on the surface. All four organic anions (dodecyl sulfate, folate, citrate and polyacrylate) also significantly affect the zeta potential of the LDH particles. At the lower concentrations of organic anionic groups (<1x10(-4) M), the zeta potential was slightly affected, i.e. limited exchange/adsorption. However, the concentration increasing to some point suddenly decreases and reverses the zeta potential of the LDH particles, which is presumably caused by the hydrophobic interactions that bind the hydrophobic hydrocarbon chains (especially in dodecyl sulfate) into the micelle-like bilayer bunches on the LDH surface. In addition, the effect of pH in 5.5-11.0 on the LDH particle surface charging is mainly reflected through the conversion of CO(3)(2-) to HCO(3)(-)/H(2)CO(3) when pH decreases from ca. 11 to 6, with limited contribution from protonation/deprotonation and exchange/adsorption.  相似文献   

16.
Ligand-exchange reactions of the aminodiphosphine ligand bis[(2-diphenylphosphino)ethyl]amine hydrochloride (PNHP x HCl) with labile M(NPh)Cl3(PPh3)2 precursors (M = Re, Tc) in the presence of triethylamine yield monocationic phenylimido mer,cis-[M(NPh)Cl2(PNHP)]Cl (M = Re, 1; Tc, 2) intermediate complexes. X-ray analyses show that in both compounds the aminodiphosphine acts as a tridentate ligand dictating a mer,cis arrangement. Two chloride ligands, respectively in an equatorial and in the axial position trans to the linear M-NPh moiety, fill the remaining positions in a distorted-octahedral geometry. The chloride trans to the metal-imido core is labile, and is replaced by an alcoholate group, without affecting the original geometry, as established in mer,cis-[Re(NPh)(OEt)Cl(PNHP)]Cl 4. Otherwise, ligand-exchange reactions involving the aminodiphosphine bis[(2-diphenylphosphino)ethyl]methylamine (PNMeP), in which the central secondary amine has been replaced by a tertiary amine function, or its hydrochloride salt (PNMeP x HCl) give rise to three different species, depending on the experimental conditions: fac,cis-[Re(NPh)Cl2(PNMeP)]Cl 3a, cis,fac-Re(NPh)Cl3(PNMeP) x HCl 3b, and mer,trans-[Re(NPh)Cl2(PNMeP)]Cl 3c, which are characterized in solution by multinuclear NMR studies. The monodentate groups incorporated in these intermediate compounds, either halides and/or ethoxide, undergo substitution reactions with bidentate donor ligands such as catechol, ethylene glycol, and 1,2-aminophenol to afford stable mixed ligand complexes of the type [M(NPh)(O,O-cat)(PNP)]Cl [PNP = PNHP M = Re 5, Tc 6; PNP = PNMeP M = Re 7], [Re(NPh)(O,O-gly)(PNP)]Cl [PNP = PNHP 8, PNMeP 9] and [Re(NPh)(O,N-ap)(PNMeP)]Cl 10. X-ray diffraction analyses of the representative compounds 5 and 8 reveal that the aminodiphosphine switches from the meridional to the facial coordination mode placing the heteroatom of the diphosphine trans to the phenylimido unit and the bidentate ligand in the equatorial plane. Solution-state NMR studies suggest an analogous geometry for 6, 7, 9, and 10. Comparison with similar mixed ligand complexes including the terminal nitrido group is discussed.  相似文献   

17.
In a novel template synthesis of carbodiphosphoranes (CDPs), the phosphine functionalized CDP ligand C(dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) is formed in the coordination sphere of group 10 metals from CS(2) and 4 equivalents of dppm. The products are the PCP pincer complexes [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt) and 2 equivalents of dppmS. The compound C(dppm)(2), which is composed of a divalent carbon atom and two dppm subunits, represents a new PCP-type pincer ligand with the formally neutral carbon Lewis base of the CDP functionality as the central carbon. Treatment of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Pd, Pt) with hydrochloric acid results in protonation at the CDP carbon atom and the formation of the PCP pincer complexes [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt). The PCP pincer ligand [CH(dppm)(2)](+) involves a formally cationic central carbon donor. The reaction of [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl with HCl leads to the extrusion of NiCl(2) and formation of the diprotonated CDP compound [CH(2)(dppm)(2)]Cl(2), from which the monoprotonated conjugate base [CH(dppm)(2)]Cl is obtained upon addition of bases, such as NH(3). The crystal structures of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt), [Ni(Cl)(C(dppm)(2)-κ3P,C,P)](2)[NiCl(4)], [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt) as well as [CH(2)(dppm)(2)]Cl(2) and [CH(dppm)(2)]Cl are presented. A comparison of the solid state structures reveals interesting features, e.g. infinite supramolecular networks mediated by C-H···Cl hydrogen bond interactions and an unexpected loss of molecular symmetry upon protonation in the complexes [M(CH(dppm)(2)-κ3P,C,P)(Cl)]Cl(2) (M = Pd, Pt) as a result of the flexible ligand backbone. Additionally the new compounds were characterized comprehensively in solution by multinuclear (31)P, (13)C and (1)H NMR spectroscopy: Several spectroscopic parameters show a striking variability in particular regarding the carbodiphosphorane functionality. Furthermore the compound [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl was examined by cyclic voltammetry (CV) and could be shown to display quasi-reversible oxidative as well as reductive behaviour.  相似文献   

18.
The kinetics of decomposition of peroxynitrous acid (ONOOH) was investigated in the presence of 0.1-0.75 M HClO(4) and at a constant ionic strength. The decay rate of ONOOH decreased in the presence of H(2)O(2), approaching a limiting value well below 75 mM H(2)O(2). It also decreased in the presence of relatively low [HNO(2)] but did not approach a lower limiting value, since ONOOH reacts directly with HNO(2). The latter reaction corresponds to a HNO(2)- and H(+)-catalyzed isomerization of ONOOH to nitrate, and its third-order rate constant was determined to be 520 +/- 30 M(-)(2) s(-)(1). The mechanism of formation of O(2)NOOH from ONOOH in the presence of H(2)O(2) was also scrutinized. The results demonstrated that in the presence of 0.1-0.75 M HClO(4) and 75 mM H(2)O(2) the formation of O(2)NOOH is insignificant. The most important finding in this work is the reversibility of the reaction ONOOH + H(2)O right harpoon over left harpoon HNO(2) + H(2)O(2), and its equilibrium constant was determined to be (7.5 +/- 0.4) x 10(-)(4) M. Using this value, the Gibbs' energy of formation of ONOOH was calculated to be 7.1 +/- 0.2 kcal/mol. This figure is in good agreement with the value determined previously from kinetic data using parameters for radicals formed during homolysis of peroxynitrite.  相似文献   

19.
The mixed-anion coordination polymer Cu(HCO2)(NO3)(pyz) was synthesized, its crystal structure was determined by X-ray diffraction, and its magnetic structure was characterized by ac susceptibility, dc magnetization, muon-spin relaxation, and spin dimer analysis. The crystal structure consists of five-coordinate Cu2+ ions that are connected through syn-anti bridging mu-HCO2- and mu-pyz ligands to form a highly corrugated two-dimensional layered network. Bulk magnetic measurements show a broad maximum in chi(T) at 6.6 K. The HCO2- and pyz ligands mediate ferromagnetic and antiferromagnetic spin exchange interactions between adjacent Cu2+ ions with the spin exchange parameters J/kB = 8.17 and -5.4 K, respectively (H = -JSigmaSi x Sj). The muon-spin relaxation data show a transition to a long-range magnetic ordering below TN = 3.66(3) K. For T < TN, the M(H) and chi'ac measurements provide evidence for a field-induced spin-flop transition at 15.2 kOe. That Cu(HCO2)(NO3)(pyz) undergoes a long-range magnetic ordering is an unexpected result because the one-dimensional Cu(NO3)2(pyz) and three-dimensional Cu(HCO2)2(pyz) compounds display linear chain antiferromagnetism with no long-range magnetic ordering down to 2 K.  相似文献   

20.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号