首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.  相似文献   

2.
High-energy milling of Y(BH(4))(3) (containing LiCl as a by-product, which has not been removed) with MBH(4) (M = Li, Na, K, (CH(3))(4)N) leads to the first two examples of quasi-ternary yttrium borohydrides: KY(BH(4))(4) and (CH(3))(4)NY(BH(4))(4), while no chemical reaction is observed for LiBH(4) and NaBH(4). KY(BH(4))(4) is isostructural to NaSc(BH(4))(4) (Cmcm, a = 8.5157(4) ?, b = 12.4979(6) ?, c = 9.6368(5) ?, V = 1025.62(9) ?(3), Z = 4), while (CH(3))(4)NY(BH(4))(4) crystallises in primitive orthorhombic cell, similarly to KSc(BH(4))(4) (Pnma, a = 15.0290(10) ?, b = 8.5164(6) ?, c = 12.0811(7) ?, V = 1546.29(17) ?(3), Z = 4). The thermal decomposition of hydrogen-rich KY(BH(4))(4) (8.6 wt.% H) involves the formation of an unidentified intermediate at 200 °C and recovery of KBH(4) at higher temperatures; at 410 °C, KCl and YH(2) are observed. The thermal decomposition of (CH(3))(4)NY(BH(4))(4) occurs via two partly overlapping endothermic steps with concomitant emission of H(2) and organic compounds. Heating of a NaBH(4)/Y(BH(4))(3) mixture above 165 °C results in a mixed-cation mixed-anion borohydride, NaY(BH(4))(2)Cl(2), but not NaY(BH(4))(4). The reduced reactivity of Y(BH(4))(3) towards borohydride Lewis bases when compared to hypothetical scandium borohydride can be explained by the lower Lewis acidity of Y(BH(4))(3) than Sc(BH(4))(3).  相似文献   

3.
A new family of Al-based MOFs denoted as CAU-3 (CAU = Christian-Albrechts-Universit?t) was discovered in the solvothermal system Al(3+)/aryldicarboxylic acid/NaOH/methanol by applying high-throughput-methods. The three compounds reported in this article [Al(2)(OCH(3))(4)BDC], [Al(2)(OCH(3))(4)BDC-NH(2)] and[Al(2)(OCH(3))(4)NDC] (BDC = 1,4-benzenedicarboxylate; NDC = 2,6-naphtalenedicarboxylate) are all based on the same unprecedented inorganic building unit [Al(12)(OCH(3))(24)](12+), which is a dodecameric cyclic aluminium-methanolate-cluster. The material CAU-3-NDC was found to exhibit the highest surface area as well as the highest micropore volume of all Al-based MOFs reported until now.  相似文献   

4.
A comprehensive study of the isomer-independent synthesis of TRIS ((HOCH(2))(3)CNH(2)) Mn-Anderson compounds from Na(2)MoO(4)·2H(2)O, via the corresponding octamolybdate species, is presented. Three octamolybdate salts of [Mo(8)O(26)](4-) in the β-isomer form, with tetramethylammonium (TMA), tetraethylammonium (TEA) and tetrapropylammonium (TPA) as the counter cation, were synthesised from the sodium molybdate starting material. Fine white powdery products for the three compounds were obtained, which were fully characterised by elemental analysis, TGA, solution and solid state Raman, IR and ESI-MS, revealing a set ratio of Na and organic cations for each of the three compounds; (TMA)(2)Na(2)[Mo(8)O(26)] (1), (TEA)(3)Na(1)[Mo(8)O(26)] (2) and (TPA)(2)Na(2)[Mo(8)O(26)] (3), and the analyses also confirmed that the three compounds all consisted of the octamolybdate in the β-isomeric form. ESI-MS analyses of 1, 2 and 3 show similar fragmentation for these β-isomers compared to the previously reported study for the α-isomer ((TBA)(4)[α-Mo(8)O(26)]) (A) in the synthesis of ((TBA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)]) (B), and compounds 1, 2 and 3 were successfully used to synthesise equivalent TRIS Mn-Anderson compounds: (TMA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (4), (TEA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (5) and (TPA)(2)Na(1)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (6), as well as Na(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (7). This is the first example where symmetric organically-grafted Mn-Anderson compounds have been synthesised in DMF from anything but the {Mo(8)O(26)} α-isomer.  相似文献   

5.
C-H bond activation was observed in a novel PCO ligand 1 (C(6)H(CH(3))(3)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))) at room temperature in THF, acetone, and methanol upon reaction with the cationic rhodium precursor, [Rh(coe)(2)(solv)(n)()]BF(4) (solv = solvent; coe = cyclooctene). The products in acetone (complexes 3a and 3b) and methanol (complexes 4a and 4b) were fully characterized spectroscopically. Two products were formed in each case, namely those containing uncoordinated (3a and 4a) and coordinated (3b and 4b) methoxy arms, respectively. Upon heating of the C-H activation products in methanol at 70 degrees C, C-C bond activation takes place. Solvent evaporation under vacuum at room temperature for 3-4 days also results in C-C activation. The C-C activation product, ((CH(3))Rh(C(6)H(CH(3))(2)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))BF(4)), was characterized by X-ray crystallography, which revealed a square pyramidal geometry with the BF(4)(-) anion coordinated to the metal. Comparison to the structurally similar and isoelectronic nonchelating Rh-PC complex system and computational studies provide insight into the reaction mechanism. The reaction mechanism was studied computationally by means of a two-layer ONIOM model, using both the B3LYP and mPW1K exchange-correlation functionals and a variety of basis sets. Polarization functions significantly affect relative energetics, and the mPW1K profile appears to be more reliable than its B3LYP counterpart. The calculations reveal that the electronic requirements for both C-C and C-H activation are essentially the same (14e intermediates are the key ones). On the other hand, the steric requirements differ significantly, and chelation appears to play an important role in C-C bond activation.  相似文献   

6.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

7.
The oxidation of (tmeda)Pt(II)(CH(3))(2) (1, tmeda = N,N,N',N'-tetramethylethylenediamine) to (tmeda)Pt(IV)(OH)(OCH(3))(CH(3))(2) (3) by dioxygen in methanol proceeds via a two-step mechanism. The initial reaction between (tmeda)Pt(CH(3))(2) and dioxygen yields a hydroperoxoplatinum(IV) intermediate, (tmeda)Pt(OOH)(OCH(3))(CH(3))(2) (2), which reacts with a second equivalent of (tmeda)Pt(CH(3))(2) to afford the final product 3. Both 2 and 3 have been fully characterized, including X-ray crystallographic structure determinations. The effect of ligand variation on the oxidation of several dimethylplatinum(II) complexes by 2 as well as by dioxygen has been examined.  相似文献   

8.
The first heterobimetallic Bi:Sn alkoxide complexes [Bi(2)SnO(OCH(CF(3))(2))(5)(O(t)Bu)(3)(THF)] (1) and [BiSnO(OCH(CF(3))(2))(3)(O(t)Bu)(2)](2) (2) are described. The complexes were obtained through mixing and heating equimolar quantities of the component alkoxides, Bi(OCH(CF(3))(2))(3) and Sn(O(t)Bu)(4), under solvent-free conditions (1) and in THF (2). The solid-state structures were determined by single crystal X-ray diffraction showing ligand redistribution from Bi(III) to Sn(IV) in the two molecular species. Compound 2 behaves as a single-source precursor for the thermolytic formation of bismuth pyrostannate, Bi(2)Sn(2)O(7).  相似文献   

9.
Synthesis and magnetic studies of annelated macrocyclic polyradicals and a related high-spin polymer with macrocyclic repeat units are described. Polyarylmethyl polyether precursors to the polyradicals and the related polymer are prepared by using Negishi cross-coupling of difunctionalized calix[4]arene-based macrocycles. The three lowest homologues, with high degree of monodispersity, are tetradecaether (14-ether) 3-(OCH(3))(14), octacosaether (28-ether) 4-(OCH(3))(28), and dotetracontaether (42-ether) 5-(OCH(3))(42), in which 2, 4, and 6 calix[4]arene-based macrocycles are annelated to the center macrocycle, respectively. The evidence for their annelated structures (ladder connectivities) is based upon FAB-MS and the (1)H NMR based end-group analysis. The absolute masses (4-12 kDa) were determined by FAB-MS and GPC/MALS. Small angle neutron scattering (SANS) provides the radii of gyration of 1.7, 2.0, and 3.2 nm for 4-(OCH(3))(28), 5-(OCH(3))(42), and polymer 6-(OCH(3))(n), respectively. The corresponding polyarylmethyl polyradicals 3 and 4, and polymer 6 possess average values of S approximately 6-7, S approximately 10, and S approximately 18, respectively, as determined by SQUID magnetometry and numerical fits to linear combinations of Brillouin functions. The quantitative values of magnetization at saturation and of magnetic susceptibilities indicate that about 40-60 % of unpaired electrons are present at low temperatures (T=1.8-5 K). For polyradical 3, the variable temperature magnetic data are fit to the Heisenberg Hamiltonian based model. The variable magnetic field data at low temperatures are also fit to a percolation-based model for organic spin cluster, with random distribution of chemical defects, and ferromagnetic versus antiferromagnetic couplings, providing quantitative agreement between the experiment and the theory. For polyradical 3 (with S approximately 6-7), annealing at room temperature for 0.5 h leads to a polyradical with S approximately 5.  相似文献   

10.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

11.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

12.
Ion-molecule reactions between the O=P(OCH(3))(2) (+) phosphonium ions and five aliphatic esters (methyl acetate, methyl propionate, methyl 2-methylpropionate, methyl butyrate and ethyl acetate) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2) (+) phosphonium ions, formed by electron ionization from neutral trimethyl phosphite, were found to react with aliphatic esters to give an adduct ion [RR'CHCOOR", O=P(OCH(3))(2)](+), which loses spontaneously a molecule of ketene CH(2)=CO or substituted ketenes RR'C=CO. Isotope-labeled methyl acetate was used to elucidate fragmentation mechanisms. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2) (+) and methyl acetate is described.  相似文献   

13.
Tantalum complexes [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NMe(2))=CH)py}] (4) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NH(2))=CH)py}] (5), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ(3)-N,O,O-(OCH(2))(OCH)py}] (Cp* = η(5)-C(5)Me(5)) with HC≡CCH(2)NMe(2) and HC≡CCH(2)NH(2), respectively. The reactions of [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(Ph)=CH)py}] (2) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(SiMe(3))=CH)py}] (3) with triflic acid (1:2 molar ratio) rendered the corresponding bis-triflate derivatives [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(Ph)=CH(2))py}] (6) and [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(SiMe(3))=CH(2))py}] (7), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water-soluble cationic complex [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH)py}]OTf (8). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H(2)O){κ(3)-N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH(2))py}](OTf)(2) (9). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH)py}](OTf)(2) (10), which afforded the corresponding protonolysis derivative [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH(2))py}](OTf) (11) in solution. Complex 8 reacted with CNtBu and potassium 2-isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13, respectively. The molecular structures of complexes 5, 7, and 10 were established by single-crystal X-ray diffraction studies.  相似文献   

14.
The formation of dimethyl carbonate (DMC) from CO(2) and methanol with the dimer [n-Bu(2)Sn(OCH(3))(2)](2) was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO(2)/toluene, supercritical CO(2), and CO(2)/methanol, and are consistent with the formation of monomeric di-n-butyltin(iv) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol(-1) for DMC synthesis. DFT calculations on the [(CH(3))(2)Sn(OCH(3))(2)](2)/CO(2) system show that the exothermic insertion of CO(2) into the Sn-OCH(3) bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH(3) bonds are prompt to insert CO(2). These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers.  相似文献   

15.
A new ammine dual-cation borohydride, LiMg(BH(4))(3)(NH(3))(2), has been successfully synthesized simply by ball-milling of Mg(BH(4))(2) and LiBH(4)·NH(3). Structure analysis of the synthesized LiMg(BH(4))(3)(NH(3))(2) revealed that it crystallized in the space group P6(3) (no. 173) with lattice parameters of a=b=8.0002(1) ?, c=8.4276(1) ?, α=β=90°, and γ=120° at 50 °C. A three-dimensional architecture is built up through corner-connecting BH(4) units. Strong N-H···H-B dihydrogen bonds exist between the NH(3) and BH(4) units, enabling LiMg(BH(4))(3)(NH(3))(2) to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH(4))(3)(NH(3))(2)/LiBH(4) composite is able to release over 8 wt% hydrogen below 200 °C, which is comparable to that released by Mg(BH(4))(3)(NH(3))(2). More importantly, it was found that release of the byproduct NH(3) in this system can be completely suppressed by adjusting the ratio of Mg(BH(4))(2) and LiBH(4)·NH(3). This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.  相似文献   

16.
Treatment of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1), which is prepared by the reaction of [[RuCl(P(OCH(3))(3))(2)](2)(mu-S(2))(mu-Cl)(2)] (2) with 4 equiv of AgCF(3)SO(3), with terminal alkenes such as 1-pentene, allyl ethyl ether, allyl phenyl ether, 1,4-hexadiene, and 3-methyl-1-butene, resulted in the formation of complexes carrying a C(3)S(2) five-membered ring, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CR(1)R(2)S]](CF(3)SO(3))(4) (3, R(1) = CH(2)CH(3), R(2) = H, 40%; 4, R(1) = OCH(2)CH(3), R(2) = H, 60%; 5, R(1) = OC(6)H(5), R(2) = H, 73%; 6, R(1) = CH=CHCH(3), R(2) = H, 48%; 7, R(1) = R(2) = CH(3), 40%). Reaction of 1 with methylenecycloalkanes was found to give several different types of products, depending on the ring size of the substrates. A trace of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(CH(2)CH(2))CH(CH(3))S]](CF(3)SO(3))(4) (9) having a C(2)S(2) four-membered ring to bridge the two Ru atoms was obtained by the reaction of 1 with methylenecyclobutane, whereas the reaction with methylenecyclohexane gave [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-S(CH(2)(C=CHCH(2)CH(2)CH(2)CH(2))S)](CF(3)SO(3))(3) (10) in 69% yield via C-S bond formation and elimination of a proton. Throughout these reactions with alkenes giving a variety of products, the activation of the allylic C-H bond is always the essential and initial key step.  相似文献   

17.
A new series of subphthalocyanines substituted axially with an oligoethylene glycol chain [SPcB(OCH(2)CH(2))(n)OH, n = 3 (2) or 4 (3)] or a p-phenoxy oligoethylene glycol methyl ether chain [SPcBOC(6)H(4)(OCH(2)CH(2))(n)OCH(3), n = 2 (4) or 3 (5)] have been synthesised by substitution reactions of boron subphthalocyanine chloride SPcBCl (1) with the corresponding oligoethylene glycols, and characterised with various spectroscopic methods and elemental analysis. The molecular structure of one of these compounds (subphthalocyanine 4) has also been determined. As revealed by absorption spectroscopy, these compounds are essentially non-aggregated in DMF. The low aggregation tendency of these compounds results in a strong fluorescence emission and high efficiency to generate singlet oxygen. All these subphthalocyanines, being formulated with Cremophor EL, function as efficient photosensitisers and exhibit a high photocytotoxicity against HepG2 human hepatocarcinoma and HT29 human colon adenocarcinoma cells. The phenoxy analogues 4 and 5 show a relatively high photostability and are particularly potent towards these cell lines, with IC(50) values down to 0.02 microM.  相似文献   

18.
The cyclic phosphazene trimer P(3)N(3)(OCH(2)CF(3))(6)and the related cyclic tetramer P(4)N(4)(OCH(2)CF(3))(8) have been synthesized, isolated and their vapor-phase absorption spectra recorded at moderate resolution using an FTIR spectrometer. The interpretation of these spectra is achieved primarily by comparison with the results of high-precision density functional calculations, which enable the principal absorption features to be assigned and conclusions to be drawn regarding the geometries and conformations adopted by both molecules. These in turn allow interesting comparisons to be made with analogous cyclic halo-phosphazenes (such as P(3)N(3)Cl(6)) and other related ring compounds. The highly flexible nature of the two cyclic phosphazenes precludes a complete theoretical study of their potential energy hypersurfaces and a novel alternative approach involving the analysis of a carefully selected subset of the possible molecular conformations has been shown to produce satisfactory results. The two cyclic phosphazene oligomers have been proposed as the major low-to-medium temperature pyrolysis products of the parent polyphosphazene (PN(OCH(2)CF(3))(2))(n), and the identification of vibrational absorption features characteristic of each molecule will enable future studies to test the validity of this proposition.  相似文献   

19.
Ion/molecule reactions between O=P(OCH(3))(2)(+) phosphonium ions and six aromatic hydrocarbons (benzene, toluene, 1,2,4-trimethylbenzene, naphthalene, acenaphthylene and fluorene) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2)(+) phosphonium ions, formed by electron impact from neutral trimethyl phosphite, were found to react with aromatic hydrocarbons (ArHs) to give (i) an adduct [ArH, O=P(OCH(3))(2)](+) and (ii) for ArHs which have an ionization energy below or equal to 8.14 eV, a radical cation ArH(+ *) by charge transfer reaction. Collision-induced dissociation experiments, which produce fragment ions other than the O=P(OCH(3))(2)(+) ions, indicate that the adduct ions are covalent species. Isotope-labeled ArHs were used to elucidate fragmentation mechanisms. The charge transfer reactions were investigated using density functional theory at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level of theory. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2)(+) and benzene is described.  相似文献   

20.
We have used coarse-grained molecular dynamics simulations to show that hydrated lipid micelles of preferred sizes and amounts of filling with hydrophobic molecules can be self-assembled on the surfaces of carbon nanotubes. We simulated micelle formation on a hydrated (40,0) carbon nanotube with an open end that was covered with amphiphilic double-headed CH(3)(CH(2))(14)CH(((CH(2)OCH(2)CH(2))(2)(CH(2)COCH(2)))(2)H)(2) or single-headed CH(3)(CH(2))(14)CH(2)((CH(2)OCH(2)CH(2))(2)(CH(2)COCH(2)))(4)H lipids and filled with hexadecane molecules. Once the hexadecane molecules inside the nanotube were pressurized and the lipids on its surface were dragged by the water flowing around it, kinetically stable micelles filled with hexadecane molecules were sequentially formed at the nanotube tip. We investigated the stability of the thus-formed kinetically stable filled micelles and compared them with thermodynamically stable filled micelles that were self-assembled in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号