首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sato S 《Talanta》1985,32(5):341-344
Highly sensitive and reproducible extraction-spectrophotometric methods for differential determination of antimony(III) and antimony(V) were investigated. It was found that antimony(III) reacts easily with mandelic acid to form a complex anion extractable into chlorobenzene with Malachite Green from weakly acidic media (pH 2.2-3.5) at room temperature, whereas antimony(V) reacts only slowly, and heating for 15 min at 45 degrees is needed to obtain maximum sensitivity. The significant difference between the rates of reaction of mandelic acid with antimony(III) and antimony(V) was applied to the differential determination of these two species. The calibration graph was linear over the range 0.15-6.0 mug for antimony(III), and 0.20-10 mug for antimony(V).  相似文献   

2.
Kamada T  Yamamoto Y 《Talanta》1977,24(5):330-333
The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water.  相似文献   

3.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

4.
Antimony(III) is determined indirectly through its reaction with excess of chromium(VI), the excess being quantified with diphenylcarbazide and measurement at 540 nm. Antimony(V) is reduced to antimony(III) with sodium sulfite in hydrochloric acid solution; excess of sulfite is eliminated by boiling. The subsequent determination of antimony(III) gives the concentration of total antimony, and antimony(V) is found from the difference between the results before and after reduction. Antimony in its different oxidation states can be determined in the range 0.04–0.7 mg l?1 within an error of about 10%.  相似文献   

5.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

6.
Antimony(III) was preconcentrated on activated carbon (AC) as the antimony(III)–pyrogallol complex. Prior to the preconcentration, antimony(V) was reduced to antimony(III) with potassium iodide and ascorbic acid. The antimony adsorbed on the AC was determined by graphite furnace atomic absorption spectrometry as an AC suspension. The method was applied to differential determination of trace amounts of antimony in natural water.  相似文献   

7.
A new analytical procedure for the speciation of antimony in liver tissues is presented here. For this purpose, a flow injection system has been developed for the treatment of samples and the determination of antimony by hydride generation - atomic absorption spectrometry. The method involves the sequential and the on-line extraction of antimony(III) and antimony(V) from solid lyophilized blood and hamsters liver tissues, with 1.5 mol l(-1) acetic acid and 0.5 mol l(-1) sulfuric acid for Sb(III) and Sb(V), respectively. Reduction of Sb(V) to Sb(III) for stibine generation is effected by the on-line pre-reduction with l-cysteine. The linear ranges were 2.5-20 and 1.0-25 mug l(-1) of Sb(III) and Sb(V), respectively. The detection limits (3sigma) were 1.0 mug l(-1) for Sb(III) and 0.5 mug l(-1) for Sb(V). The relative standard deviation values for fifteen independent measurements were 2.1 and 1.8% for Sb(III) and Sb(V), respectively. The recovery studies performed with samples of cattle liver provided results from 98 to 100% for Sb(III) and from 100 to 103% for Sb(V) for samples spiked with single species. For samples spiked with both Sb(III) and Sb(V), the recovery varied from 97 to 103% for Sb(III) and from 101 to 103% for Sb(V).  相似文献   

8.
An indirect method for the determination of antimony(III) is described. Antimony(III) is oxidized to antimony(V) by chromium(VI) and the excess of chromium(VI) is then determined spectrophotometrically with diphenylcarbazide. Optimal conditions were established for both the determination of antimony(III) and the elimination or reduction of interferences. Antimony(III) can be determined quickly and easily in the range 0.05–5 mg l?1; the relative standard deviation is 2% for 1.0 mg l?1 antimony(III). The method is applicable to marine sediments and geothermal waters.  相似文献   

9.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 microg/L and 0.29 microg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

10.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 μg/L and 0.29 μg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

11.
Traces amounts of arsenic and antimony in water samples were determined by gas chromatography with a photoionization detector after liquidnitrogen cold trapping of their hydrides. The sample solution was treated with sodium hydroborate (NaBH4) under weak-acid conditions for arsenic(III) and antimony(III) determination, and under strong-acid conditions for arsenic(III+V) and antimony(III+V) determination. Large amounts of carbon dioxide (CO2) and water vapor obscured determination of arsine and stibine. Better separation from interference could be achieved by removing CO2 and water vapor in two tubes containing sodium hydroxide pellets and calcium chloride, respectively. The detection limits of this method were 1.8 ng dm?3 for arsenic and 9.4 ng dm?3 for antimony in the case of 100-cm3 sample volumes. Therefore, it is suitable for determination of trace arsenic and antimony in natural waters.  相似文献   

12.
The selective retention of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a column of Chromosorb 102 resin from a buffered sample solution including Sb(V) was used for the determination of Sb(III). The retained antimony was eluted with acetone. The retention of the Sb(III)-iodide compounds with sodium iodide on the Chromosorb 102 resin column from the same solution after reducing Sb(V) to Sb(III) by iodide in acidic solution was used to preconcentrate the total antimony. The retained antimony was eluted with 0.25 mol l(-1) HNO3. The antimony in the effluent was determined by flame atomic-absorption spectrometry. Also, the total antimony was determined directly by graphite-furnace atomic absorption spectrometry. The Sb(V) concentration could be calculated by the difference. The recoveries were > or = 95%. The detection limits of a combination of the column procedure and flame AAS for antimony were 6 - 61 microg l(-1) and comparable to 4 microg l(-1) for a direct GFAAS measurement. The relative standard deviations were <6%. The procedure was applied to the determination of Sb(III) and Sb(V) in spiked tap water, waste-water samples and a certified copper metal with the satisfactory results.  相似文献   

13.
A comparative study was made of several methods to speciale Sb(III) and Sb(V) by AAS: 1) Selective extraction of Sb(III) with lactic acid/malachite green graphite furnace-AAS, 2) Sb(III) and total antimony determination by hydride generation-AAS coupled to flow injection, batch, and continuous flow systems. These methods were applied to determine total antimony and Sb(III) in sea and surface water and total antimony in sediments and in soil. For soils different sample pretreatments were used: HNO3-H2SO4-HC1O4, HF-HNO3-H2SO4-HC1O4, cold aqua regia and slurry formation procedures in water and 4M HC1. In each case the recovery of total antimony and the ability to selective determine Sb(III) were studied. The detection limits obtained were 0.01 ng, 0.07 ng, 2.97 ng and 0.21 ppb for GF-AAS, FIA-HG-AAS, HG (Batch)-AAS, and HG (continuous flow)-AAS, respectively.  相似文献   

14.
Antimony(III) is determined by means of electrolysis at ?0.40 V vs. Ag/AgCl on a gold-coated gold fibre electrode for 0.5–10 min in a redox buffer containing 0.01 M iron(II) in 0.10 M hydrochloric acid, and subsequent stripping with a constant current of 0.50μA either in 2 M hydrochloric acid or in 4 M hydrochloric acid/4 M calcium chloride. Antimony(V) is determined by the same procedure in 4 M hydrochloric acid medium. Bismuth(III) is masked by the addition of iodide to the sample prior to electrolysis. Antimony(III) and antimony(V) are determined by standard addition methods; the whole procedure including digital and graphical evaluation of the results is fully automated. The antimony(V) concentrations in the river water reference sample SLRS-1 and the seawater reference sample NASS-1 were found to be 0.63 and 0.31 μg l?1 with standard deviations of 0.046 and 0.051 μg l?1, respectively (n=15). The certified value for SLRS- 1 is 0.63±0.05 μg l?1; no certified value is available for NASS-1.  相似文献   

15.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

16.
A method has been derived for the selective extraction of antimony(V) from hydrochloric acid solution with ethyl acetate. The method can be employed for the rapid determination of antimony in antimonates of lead, tin, mercury, nickel and chromium and in type metal. Iron(III), cobalt(II) cadmium(II), and large amounts of copper(II) and tin(II) interfere with the extraction. For the analysis of type metal, tin must be oxidized to the tetravalent state.  相似文献   

17.
Antimony(III) and antimony(V) species have been selectively determined in liver tissues by optimizing the acidic conditions for the evolution of stibine using the reduction with sodium borohydride. The results show that a response for Sb(III) of 0.5 to 20 microg l(-1) was selectively obtained from samples in a 1 mol l(-1) acetic acid medium. The best response for total antimony from 1 to 20 microg l(-1) is obtained after sample treatment with a 0.5 mol l(-1) sulfuric acid and 10% w/v potassium iodide. Microwave digestion has been necessary to release quantitatively antimony species from sample slurries. The amount of Sb(V) was calculated from the difference between the value for total antimony and Sb(III) concentrations. A relative standard deviation from 2.9 to 3.1% and a detection limit of 0.15 and 0.10 microg l(-1) for Sb(III) and total Sb has been obtained. The average accuracy exceeded 95% in all cases comparing the results obtained from recovery studies, electrothermal atomic absorption spectrometry and the analysis of certified reference materials.  相似文献   

18.
A simple, rapid and sensitive method is described for the determination of trace concentrations of antimony by inductively-coupled plasma atomic emission spectrometry with hydride generation. Hydrochloric acid (1 M) is the best medium for stibine generation, but antimony(III) is also effectively reduced to stibine in 1 M malic acid or 0.5 M tartaric acid, whereas antimony(V) gives no significant signal in either of these acids. This permits the differential determination of Sb(III) and Sb(V). Most of the inter-element interference effects can be minimized by thiourea, bur standard additions are recommended for accurate determinations. Thiourea is also effective in prereducing Sb(V) to Sb(III). The detection limit is 0.19 ng Sb ml?1 and the calibration graph is linear up to 100 μg ml?1. The r.s.d, at 1 and 100 ng Sb ml?1 are 3.8 and 2.1%, respectively. The method is applied to copper metal and to speciation of antimony in waste water.  相似文献   

19.
The solution conditions and other parameters affecting the ammonium pyrrolidine-dithiocarbamate—methyl isobutyl ketone extraction system for graphite-furnace atomic absorption spectrometric determination of As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were studied in detail. The solution conditions for the single or simultaneous extraction of As(III), Sb(III) and Se(IV) were not critical. Arsenic(V) and Se(VI) were not extracted over the entire range of pH and acidity studied. Antimony(V) was extracted only in the acidity range 0.3—1.0 M HCl. Simultaneous extraction of total arsenic and total antimony was possible after reduction of As(V) with thiosulphate. Interference studies are also reported.  相似文献   

20.
Wei Q  Yang J  Zhang Y  Chang G  Du B 《Talanta》2002,58(3):419-426
A novel highly sensitive and selective fluorescent reagent, 2,6,7-trihydroxy-9-(3,5-dibromo-4-hydroxyphenyl)fluorone (DBH-PF) has been studied for the spectrofluorimetic determination of antimony(III) in cetyltrimethylammonium bromide (CTMAB) microemulsion media. DBH-PF reacts with antimony(III) forming a complex with 1:2 (metal to ligand) antimony-DBH-PF in the system of HAc-NaAc buffer solution at pH 5.33. The maximum excitation and emission wavelengths are at 522 and 556 nm, respectively. The linear range of the method is 0.05 approximately 1.50 mug 10 ml(-1) and the detection limit is 0.015 mug 10 ml(-1). Foreign ions are eliminated by preconcentration and separation with sulfhydryl dextrose gel (SDG) at pH 1.0. The proposed method has been applied to the determination of antimony(III) in industrial waste water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号