首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is described for the determination of tellurium at nanogram levels in rocks and in other complex materials by the use of flameless atomic-absorption spectroscopy. A very selective organic extraction procedure is applied to avoid matrix interference effects during extraction of Te and the atomization stage in the graphite furnace. Prior separation of iron and other interfering elements is achieved by a combined cupferron-ethyl acetate extraction. Tellerium is extracted from 6M hydrochloric acid with MIBK and stripped into aqueous medium. Pipetting of the aqueous extract into the graphite furnace gives fairly good instrumental reproducibility (2-3% error). Detection limits of about 10 ppM Te for a 0.5-g sample have been achieved with the medium-performance apparatus used. Results for Te in some geochemical reference materials are reported. Indications are given for the determination of Sb and Mo in the same solutions.  相似文献   

2.
Gupta JG 《Talanta》1989,36(6):651-656
Two methods for determining mug/g and ng/g levels of the noble metals, except for osmium, in ores, concentrates, mattes, and silicate and iron-formation rocks are described. After sample decomposition with hydrofluoric acid and aqua regia, followed by fusion of any insoluble residue with sodium peroxide, the noble metals are separated from the matrix elements by either cation-exchange or co-precipitation with tellurium. The resulting eluate, or the solution obtained after dissolution of the tellurium precipitate, is evaporated to dryness and the noble metals are ultimately determined in a 1M hydrochloric acid medium by graphite-furnace atomic-absorption spectrometry. The ion-exchange method is recommended for the determination of mug/g levels of gold, silver and platinum-group elements, whilst the tellurium co-precipitation method is recommended for ng/g levels of platinum-group elements. The latter method is not recommended for the determination of ng/g levels of silver and gold in rocks, because of interference from tellurium during atomization in the furnace. Results obtained by these methods for 15 international reference samples, including four Canadian iron-formation rocks, are compared with other published data.  相似文献   

3.
Gupta JG 《Talanta》1981,28(1):31-36
With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10(-9)-10(-12) g at 2500 degrees . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values.  相似文献   

4.
In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH)3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation.  相似文献   

5.
Shamsipur M  Ramezani M 《Talanta》2008,75(1):294-300
A simple, rapid and sensitive method is proposed for selective determination of ultra trace amounts of gold from different samples. The method is based on highly efficient separation and pre-concentration of gold by dispersive liquid-liquid microextraction of gold followed by its determination with graphite furnace atomic absorption spectrometry. The pre-concentration procedure results in quantitative extraction of gold by victoria blue R from a 10-mL sample into fine droplets of chlorobenzene, with a sedimented volume of 25 microL. Then, 20 microL of 0.04% Pd(NO3)2, as chemical modifier, followed by 10 microL of the sedimented phase were consecutively pipetted into the same auto-sampler device and the content is injected into the graphite tube and the gold content is determined by graphite furnace atomic absorption spectrometry. After optimizing the extraction conditions and instrumental parameters, a pre-concentration factor of about 388 is obtained for the system. The analytical curve is linear in a concentration range of 0.03-0.5 ng mL(-1). The detection limit and relative standard deviation are 0.005 ng mL(-1) and 4.2%, respectively. The method was successfully applied to the extraction and determination of gold in tap water and silicate ore samples.  相似文献   

6.
A method is described for the accurate and precise determination of boron, beryllium and lithium in coal ash and geological materials by a point-to-plane high-voltage spark optical emission spectrometric technique. A 200-mg sample is crushed and blended with graphite, copper oxide internal standard and cellulose powders, and briquetted. Synthetic calibration standards are prepared from spectrographically pure materials blended into graphite. Corrections are made for spectral interference by iron and silicon on boron. Accurate results are presented for certified reference materials. The precision of the method, about 5%, is superior to that obtained by d.c. arc optical emission.  相似文献   

7.
Preconcentration of trace impurities form large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5–10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2–4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg−1 levels was checked by standard addition; the recoveries were> 95%.  相似文献   

8.
Enzweiler J  Potts PJ 《Talanta》1995,42(10):1411-1418
A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks.  相似文献   

9.
A simple and rapid method is described for the determination of iron in serum by atomic absorption spectrometry with a graphite furnace atomiser. The serum is diluted 40 times with water, and injected into the graphite tube. Optimal conditions are established, and interferences from proteins and salts eliminated. Since the procedure requires no sample pretreatment such as protein precipitation or wet digestion, contamination and losses by co-precipitation are excluded. The method can determine any species of iron in serum.  相似文献   

10.
Roy NK  Das AK 《Talanta》1988,35(5):406-408
Atomic-absorption methods for determination of antimony at mug/g levels in rocks and sulphide ores by flame atomization (FAA) and electrothermal atomization (ETAA) have been described. The FAA method involves the separation of antimony from matrix elements by extraction as the iodide into methyl isobutyl ketone containing tri-n-octylphosphine oxide, from dilute hydrochloric acid solution, followed by direct aspiration of the extract into an air-acetylene flame. If necessary, antimony is first separated from copper and lead by co-precipitation with hydrous ferric oxide from ammoniacal medium and by precipitation of lead as lead sulphate. The ETAA method involves co-precipitation of antimony with hydrous ferric oxide followed by dissolution of the precipitate in dilute nitric acid, mixing with nickel solution as releasing agent, and ETAA measurement by use of a tungsten strip atomizer.  相似文献   

11.
Simplified procedures for the quantitative separation and enrichment of scandium and lanthanum in igneous rocks are described. Co-precipitation with calcium oxalate is followed by co-precipitation with hydrated iron(III) oxide. Electrothermal and flame atomic absorption spectrometry are applied. The procedures are verified with synthetic sample solutions and the eighteen international reference samples of rocks and coal compare favourably with previously reported data and with data obtained by emission spectrography.  相似文献   

12.
探针-石墨炉原子吸收光谱法测定岩石矿物中的金   总被引:1,自引:0,他引:1  
本文采用自制探针系统对探针-石墨炉原子吸收光谱法测金的性能,探针系统的制作,探针的处理,探针原子化法的检测限,灵敏度及抗干扰能力进行了详细的研究,探针原子化的各项指标均优于常规的管壁原子化法。采用本法可不必分离基体物质,直接测定地质样品中的金,所得结果与萃取原子吸收法的结果相吻合。  相似文献   

13.
A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.  相似文献   

14.
Sen Gupta JG 《Talanta》1984,31(12):1053-1056
A 40-fold increase in sensitivity obtained by using a tantalum foil lining in a pyrolytically-coated graphite furnace permitted determination of low ppm levels of cerium in most silicate rocks. A preliminary preconcentration by oxalate and hydroxide co-precipitations was used before determination by use of a Varian GTA-95 atomizer coupled with an AA-475 spectrometer. The results for 3 synthetic and 19 international reference materials, including 4 new Canadian iron-formation reference materials, showed good recovery and satisfactory agreement with other published values.  相似文献   

15.
A graphite furnace atomic absorption spectrometric procedure for the determination of mercury is presented, in which the samples are suspended in a solution containing hydrofluoric and nitric acids. Silver nitrate (4% m/v) and potassium permanganate (3%) are incorporated, in the order specified, and aliquots are directly introduced into the graphite furnace. A fast heating programme with no conventional pyrolysis step is used. The detection limit for mercury in a 125 mg ml−1 suspension is 0.1 μg g−1. Calibration is performed by using aqueous standards. The reliability of the procedure is proved by analysing certified reference materials.  相似文献   

16.
Sen Gupta JG 《Talanta》1984,31(12):1045-1051
Enhancement of sensitivity by factors of up to 1.5 by use of the microsampling technique, coupled with the advantage of using small samples in small solution volumes, permits rapid flame AAS determination of traces of Sc, Y, Nd, Eu, Dy, Ho, Er, Tm and Yb in ultramafic and most other rocks of low rare-earth content, which would be either impossible or very difficult to analyse by direct aspiration because of the need for much larger sample weights and solution volumes. The rare-earths are separated by a modified ion-exchange or a double calcium oxalate and single hydrous ferric oxide co-precipitation procedure, and ultimately determined in an ethanolic perchlorate solution, buffered with 1% lanthanum, by the flame microsample injection technique, with a nitrous oxide-acetylene flame. The results obtained by this technique for six international reference rocks SY-2 (syenite), BCR-1 (basalt), BHVO-1 (Hawaiian basalt), SCo-1 (cody shale), MAG-1 (marine mud) and STM-1 (syenite) are compared with those obtained previously by the direct aspiration method and with other reported data. Results are given for four new Canadian iron formation reference materials FeR-1 to FeR-4.  相似文献   

17.
A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 μg g–1 in solid samples, when 300 mg/20 mL slurry was prepared and a 10 μL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 μg g–1 silicon in aluminium oxide.  相似文献   

18.
Gupta JG 《Talanta》1993,40(6):791-797
A new method has been developed for rapid determination of mug/g and ng/g amounts of noble metals in silicate rocks, ores and metallurgical samples by attacking with hydrofluoric acid and aqua regia, preconcentration by ion-exchange chromatography and measuring in a simultaneous multi-element graphite furnace atomic absorption spectrometer equipped with a polarized Zeeman background correction device which eliminated interferences from any incompletely separated common elements. The method was tested for Ru, Rh, Pt, Ir, Pd, Ag and Au with three Canadian certified reference materials, and then applied to the determination of ng/g amounts of these elements in four new Canadian candidate reference materials.  相似文献   

19.
Marin L  Lhomme J  Carignan J 《Talanta》2003,61(2):119-125
This study reports a preparation technique for the determination of Se concentration in lichens and plants, using matrix separation and preconcentration of samples with thiol cotton. Sample digestions were done using HNO3-H2O2-HF. A graphite furnace atomic absorption method has been used for the determination of Se in the different samples. The method was validated through the analysis of four certified reference materials (lichen, grass and sea lettuce) and of four in-house lichen materials. A limit of determination of 0.02 μg g−1 in the solid sample and a precision (relative standard deviation) varying from 3 to 15% was found through the course of this study. The most important finding resides in the fact that a mineral matrix must be added to the lichen and plant samples before decomposition to obtain high and constant recoveries.  相似文献   

20.
A system is described and evaluated for the in situ collection of generated hydrides of As, Se and Sb in a graphite furnace using a high voltage electrostatic field. Analytical figures of merit are derived using graphite furnace atomic absorption detection and a characterization of the electrostatic deposition (ED) process is presented based on optimization studies. Absolute detection limits (LOD) of 30, 16 and 33 pg were obtained for As, Se and Sb, respectively, reflecting overall generation/collection efficiencies of 80±5, 71±3 and 62±6%, respectively. Precision of replicate determination was typically 4% R.S.D. at a concentration 40-fold above the LOD for a 1 ml sample volume. The accuracy of the approach was demonstrated through the analysis of coastal seawater and marine sediment certified reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号