首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanomaterials have been widely used for applications in biomedical fields and could become indispensable in the near future. However, since it is difficult to optimize in vivo biological behavior in a 3D environment by using a single cell in vitro, there have been many failures in animal models. In vitro prediction systems using 3D human‐tissue models reflecting the 3D location of cell types may be useful to better understand the biological characteristics of nanomaterials for optimization of their function. Herein we demonstrate the potential ability of 3D engineered human‐arterial models for in vitro prediction of the in vivo behavior of nanoparticles for drug delivery. These models enabled optimization of the composition and size of the nanoparticles for targeting and treatment efficacy for atherosclerosis. In vivo experiments with atherosclerotic mice suggested excellent biological characteristics and potential treatment effects of the nanoparticles optimized in vitro.  相似文献   

2.
ANALYSIS OF THE BINDING OF PHYTOCHROME TO PARTICULATE FRACTIONS   总被引:2,自引:0,他引:2  
Abstract— The binding of phytochrome to receptor sites in a particulate fraction of maize coleoptiles has been studied as a function of the level of far-red-absorbing phytochrome (Pfr) offered in vivo and in vitro. Evidence is presented that the binding is cooperative. The degree of cooperativity expressed by the Hill coefficient of the binding function is the same (1–6) both in vivo and in vitro , whereas the Hill coefficient of the state function in vivo is significantly higher (2-1). The highest Hill coefficient (3–5) was found for the in vitro binding function in squash hooks.  相似文献   

3.
MK-0767, (+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide, is a thiazolidinedione-containing dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist that has been studied as a potential treatment for patients with type 2 diabetes. MK-0767 contains a chiral center at the C-5 position of the thiazolidinedione ring and was being developed as the racemate, due to the rapid interconversion of its enantiomers in biological samples. In the present work the in vitro and in vivo concentration ratios of the (+)-(R) to (-)-(S) enantiomers of MK-0767 were determined in plasma from humans (in vitro only) and nonclinical species used in the toxicological evaluation of rac-MK-0767, namely CD-1 mice, Sprague-Dawley rats, beagle dogs, New Zealand white rabbits, and rhesus monkeys. The R/S ratio was determined by chiral liquid chromatography/tandem mass spectrometry. Species differences were observed in the in vitro and in vivo enantiomeric ratios, as well as differences between in vitro and in vivo in some species. The in vitro R/S ratio was similar in dogs and humans (approximately 1.5-1.7). In rats and monkeys, the ratio was approximately unity, both in vitro and in vivo. In mice, the ratio was higher in vitro (approximately 1) than in vivo (approximately 0.6), while in rabbits it was higher in vivo (approximately 1) than in vitro (approximately 0.5). These results suggested that differential binding of the MK-0767 enantiomers to plasma and tissue proteins and other macromolecules may be affecting the R/S ratio both in vitro and in vivo, since in protein-free systems MK-0767 exists as the racemate.  相似文献   

4.
This paper describes an efficient synthesis and the antiparasitic evaluation of cyclic beta-amino acid-containing dipeptides 3.1-3.6 and 4.1-4.5. The antimalarial properties of all these dipeptides have been evaluated in vitro against Plasmodium falciparum and in vivo against Plasmodium berghai. Compounds 4.4 and 4.5 have been found to be very effective in this respect, with IC50 values of 3.87 and 3.64 microg/mL in the in vitro test, while 4.5 has also been found to be active in the in vivo evaluation.  相似文献   

5.
Cholesterylbutyrate (Chol-but) was chosen as a prodrug of butyric acid. Butyrate is not often used in vivo because its half-life is very short and therefore too large amounts of the drug would be necessary for its efficacy. In the last few years butyric acid's anti-inflammatory properties and its inhibitory activity towards histone deacetylases have been widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs), whose lipid matrix is Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and to test its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsion method; their average diameter is on the order of 100-150 nm and their shape is spherical. The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer cell lines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity was evaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In the review we will present data on Chol-but SLNs in vitro and in vivo experiments, discussing the possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic and chronic inflammatory diseases.  相似文献   

6.
Celastrol has attracted great attention owing to its anti-arthritis, antioxidant, and anticancer activities. Nevertheless, its metabolism in vivo (rats) and in vitro (rat liver microsomes and intestinal flora) has not been comprehensively characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry was used as a rapid and sensitive approach for studying the metabolism of celastrol in vivo and in vitro. A total of 43 metabolites were identified and characterized. These include 26 metabolites in vivo, and 28 metabolites in vitro (nine metabolites in rat liver microsomes and 24 metabolites in rat intestinal flora). Additionally, the celastrol-biotransformation capacity of the intestinal tract was confirmed to exceed that of the liver. Furthermore, the metabolic profile of celastrol is summarised. The information obtained from this study may provide a basis for understanding the pharmacological mechanisms of celastrol and will be beneficial for clinical applications.  相似文献   

7.
High throughput in vitro microsomal stability assays are widely used in drug discovery as an indicator for in vivo stability, which affects pharmacokinetics. This is based on in-depth research involving a limited number of model drug-like compounds that are cleared predominantly by cytochrome P450 metabolism. However, drug discovery compounds are often not drug-like, are assessed with high throughput assays, and have many potential uncharacterized in vivo clearance mechanisms. Therefore, it is important to determine the correlation between high throughput in vitro microsomal stability data and abbreviated discovery in vivo pharmacokinetics study data for a set of drug discovery compounds in order to have evidence for how the in vitro assay can be reliably applied by discovery teams for making critical decisions. In this study the relationship between in vitro single time point high throughput microsomal stability and in vivo clearance from abbreviated drug discovery pharmacokinetics studies was examined using 306 real world drug discovery compounds. The results showed that in vitro Phase I microsomal stability t(1/2) is significantly correlated to in vivo clearance with a p-value<0.001. For compounds with low in vitro rat microsomal stability (t(1/2)<15 min), 87% showed high clearance in vivo (CL>25 mL/min/kg). This demonstrates that high throughput microsomal stability data are very effective in identifying compounds with significant clearance liabilities in vivo. For compounds with high in vitro rat microsomal stability (t(1/2)>15 min), no significant differentiation was observed between high and low clearance compounds. This is likely owing to other clearance pathways, in addition to cytochrome P450 metabolism that enhances in vivo clearance. This finding supports the strategy used by medicinal chemists and drug discovery teams of applying the in vitro data to triage compounds for in vivo PK and efficacy studies and guide structural modification to improve metabolic stability. When in vitro and in vivo data are both available for a compound, potential in vivo clearance pathways can be diagnosed to guide further discovery studies.  相似文献   

8.
The human nucleotide excision repair system targets a wide variety of DNA adducts for removal from DNA, including photoproducts induced by UV wavelengths of sunlight. A key feature of nucleotide excision repair is its dual incision mechanism, which results in generation of a small, damage‐containing oligonucleotide approximately 24 to 32 nt in length. Detection of these excised oligonucleotides using cell‐free extracts and purified proteins with defined DNA substrates has provided a robust biochemical assay for excision repair activity in vitro. However, the relevance of a number of in vitro findings to excision repair in living cells in vivo has remained unresolved. Over the past few years, novel methods for detecting and isolating the excised oligonucleotide products of repair in vivo have therefore been developed. Here we provide a basic outline of a sensitive and versatile in vivo excision assay and discuss how the assay both confirms previous in vitro findings and offers a number of advantages over existing cell‐based DNA repair assays. Thus, the in vivo excision assay offers a powerful tool for readily monitoring the repair of DNA lesions induced by a large number of environmental carcinogens and anticancer compounds.  相似文献   

9.
Zi Shen Wan is a typical formula consisting of three herbs, Phellodendri Amurensis Cortex, Rhizoma Anemarrhenae, and Cortex Cinnamomi, and has been widely used for treating prostatitis and infection diseases. However, it lacks in‐depth research of the constituents of Zi Shen Wan in vivo and in vitro. In this work, ultra high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry and MassLynx software was established to characterize the chemical compositions of Zi Shen Wan in vivo and in vitro. In total, 92 peaks were characterized in vitro and 33 peaks were characterized in vivo based on mass spectrometry and tandem mass spectrometry data. Among the 33 compounds characterized in rat plasma, 22 prototype components absorbed in rat serum and 11 metabolites were identified in vivo. This work was fully reports the chemical constituents of traditional Chinese formula of Zi Shen Wan, it demonstrated that ultra high performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry coupled to MassLynx software and multivariate data processing approach could be successfully applied for rapid screening and comprehensive analysis of chemical constituents in vitro and prototype components or metabolites in vivo of traditional Chinese medicine.  相似文献   

10.
Thermospray liquid chromatography-mass spectrometry (LC-MS) has been used to provide structural information both from in vitro and in vivo experiments. This paper will describe the more salient aspects of the technique that have emerged. The ability of the interface to handle gradients was essential for its successful application to metabolism studies, owing to the wide range of compound polarity involved. The examples discussed in this paper include the use of LC-MS in the analysis of in vitro incubations of drugs with hepatocyte cell cultures and the direct analysis of plasma samples from in vivo studies in the dog.  相似文献   

11.
With excellent optical properties, quantum dots (QDs) have been made as attractive molecular probes for labeling cells in biological research. The purpose of the present work is to explore the possible role of silica-coated cadmium selenide (CdSe) QDs in the in vitro and in vivo cellular uptake and their subcellular localization. The in vitro uptake characteristics of silica-coated CdSe QDs were performed in cultured New Zealand rabbit adipose tissue-derived mesenchymal stem cells (RADMSCs) and Human cervical cancer cells (HeLa) using fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI). The in vitro results showed that the silica-coated CdSe QDs were efficiently taken up by the cells and it was localized in the intracellular vesicles giving strong fluorescence from the cytoplasm and nearby nucleus. Subsequently, the in vivo localization and distribution of QDs were studied by the hematoxilin stained semithin cryosections of tissues (~15 μm thickness) under fluorescence microscopy and ultrathin sections of tissues (~100 nm thickness) under confocal laser scanning microscopy at the distribution maxima. Our in vivo results confirmed the effective cellular uptake and even distribution pattern of QDs in tissues. Overall, these in vitro and in vivo results are represented with focus on internalization, subcellular localization and distribution of the QDs, in view of their potential applications in biomedical field.  相似文献   

12.
13.
Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well‐regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA‐based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.  相似文献   

14.
The effects of Photofrin-mediated photodynamic therapy (PDT) on the in vitro cell survival and in vivo tumor growth of murine radiation-induced fibrosarcoma (RIF) cell tumors have been examined following in vivo PDT treatment of tumors. The response to in vivo PDT is examined in tumors derived from RIF-1 mouse fibrosarcoma cells and in tumors derived from RIF-8A cells, which show in vitro resistance to PDT. A significant reduction in tumor volume is observed over the first three days following in vivo PDT treatment of either 5 or 10 mg/ kg. The reduction in tumor volume is greater for a 10 compared to a 5 mg/ml dose and occurs to a similar extent for both RIF-1 and RIF-8A tumors. The re-growth is significantly delayed for RIF-1 compared to RIF-8A tumors, indicating a greater response for RIF-1 tumors compared to RIF-8A tumors following PDT. A reduced response of the RIF-8A compared to the RIF-1 tumor cells is also observed in the clonogenic survival of cells from tumors that were excised and explanted in vitro immediately following in vivo PDT treatment. These data indicate that the intrinsic cell sensitivity to PDT is an important component in the mechanism that leads to tumor response following in vivo photodynamic therapy.  相似文献   

15.
《中国化学快报》2020,31(6):1654-1659
The carbon quantum dots(CQDs) and their functionalized materials are promising in biomedical field because of their unique properties;meanwhile,a growing concern has been raised about the potential toxicity of these modified materials in biosystem.In this study,we synthesized original CQDs and two common functionalized CQDs including N-doped CQDs(NCQDs) and folic acid-modified CQDs(FACQDs),and compared the toxicity and biocompatibility with each other in vitro and in vivo.L929,C6 and normal cell MDCK were selected to detect the adverse reaction of these materials in vitro.No acute toxicity or obvious changes were noted from in vitro cytotoxicity studies with the dose of these CQD materials increasing to a high concentration at 1 mg/mL.Among these materials,the FA-CQDs show a much lower toxicity.Moreover,in vivo toxicity studies were performed on the nude mice for 15 days.The experimental animals in 10 or 15 mg/kg groups were similar with animals treated by phosphate buffer solution(PBS) after 15 days.The results of the multifa rious biochemical parameters also suggest that the functionalized products of CQDs do not influence the biological indicators at feasible concentration.Our findings in vitro and in vivo through toxicity tests demonstrate that CQDs and their modified materials are safe for future biological applications.  相似文献   

16.
Bilobetin, a natural compound extracted from Ginkgo biloba, has various pharmacological activities such as antioxidation, anticancer, antibacterial, antifungal, anti‐inflammatory, antiviral, and promoting osteoblast differentiation. However, few studies have been conducted and there are no reports on its metabolites owing to its low content in nature. In addition, it has been reported to have potential liver and kidney toxicity. Therefore, this study aimed to identify the metabolites of bilobetin in vitro and in vivo. Bilobetin was incubated with liver microsomes to determine metabolites in vitro, and faeces and urine were collected after oral administration to rats to determine metabolites in vivo. After the samples were processed, they were measured using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 21 and 9 metabolites were detected in vivo and in vitro, respectively. Demethylation, demethylation and loss of water, demethylation and hydrogenation, demethylation and glycine conjugation, oxidation, methylation, oxidation and methylation, and hydrogenation were the main metabolic pathways. This study is the first to identify the metabolites of bilobetin and provides a theoretical foundation for the safe use of bilobetin in clinical application and the development of new drugs.  相似文献   

17.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.  相似文献   

18.
The influence of lipoprotein association on in vitro tumor cell killing and in vivo tumor photosensitization with benzoporphyrin derivative (BPD) has been investigated in M-1 tumor bearing mice. The association of benzoporphyrin mono acid ring A with either low or high density lipoprotein increased tumor cell killing in an in vivo/in vitro cytotoxicity assay performed 3 h post intravenous drug administration. Eight hours following photosensitizer injection only low density lipoprotein (LDL) mixtures produced significant (P less than or equal to 0.005) increases in tumor cell killing compared to BPD in unfractionated plasma. The efficacy of in vivo photosensitization in the presence of lipoproteins correlated with the in vivo/in vitro cytotoxicity. Association of BPD with low or high density lipoproteins resulted in delayed tumor regrowth and higher cure rates when light exposure (125J/cm2) was performed 3 h post drug administration. When light exposure was performed 8 h post-injection only LDL-BPD mixtures led to enhanced tumor eradication compared to BPD administered in aqueous solution or unfractionated plasma.  相似文献   

19.
Mass spectrometry has been usefully employed in the study of the products arising from in vitro and in vivo glycation of proteins. In particular, daughter-ion spectroscopy has led to an easy detection of 2-(2-furoyl)4-(5)2(furanyl)1-H-imidazole in HCl-hydrolysed glycated albumen and polylysine and the method has allowed us to exclude the presence of the same molecule in in vivo glycated proteins. Parent-ion spectroscopy has been successfully employed in the identification of furoyl-containing compounds, which are possibly responsible for the results obtained with other analytical approaches.  相似文献   

20.
ZFS parameters for the title chlorophylls in both ordinary and fully deuterated form have been determined under experimental conditions that allow the aggregation state of the chlorophylls to be specified. The triplet state spectra are polarized. The electron spin polarization (ESP) can be analyzed by a simple scheme, and is found to be sensitive to the aggregation state of the chlorophyll. Comparison of in vivo and in vitro bacteriochlorophyll spectra supports the chlorophyll special pair proposal for the structure of in vivo photo-reactive chlorophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号