首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
The interaction of metal ions with aspartic (Asp) and glutamic (Glu) acid and the role of gas-phase acidity on zwitterionic stability were investigated using infrared photodissociation spectroscopy in the spectral range 950-1900 cm (-1) and by hybrid density functional theory. Lithium ions interact with both carbonyl oxygen atoms and the amine nitrogen for both amino acids, whereas cesium interacts with both of the oxygen atoms of the C-terminus and the carbonyl oxygen of the side chain for Asp. For Glu, this structure is competitive, but a structure in which the cesium ion interacts with just the carbonyl oxygen atoms is favored and the calculated spectrum for this structure is more consistent with the experimentally measured spectrum. In complexes with either of these metal ions, both amino acids are non-zwitterionic. In contrast, Glu*Ca (2+) and Glu*Ba (2+) both adopt structures in which Glu is zwitterionic and the metal ion interacts with both oxygens of the C-terminal carboxylate and the carbonyl oxygen in the side chain. Assignment of the zwitterionic form of Glu is strengthened by comparisons to the spectrum of the protonated form, which indicate spectral features associated with a protonated amino nitrogen. Comparisons with results for glutamine, which adopts nearly the same structures with these metal ions, indicate that the lower Delta H acid of Asp and Glu relative to other amino acids does not result in greater relative stability of the zwitterionic form, a result that is directly attributed to effects of the metal ions which disrupt the strong interaction between the carboxylic acid groups in the isolated, deprotonated forms of these amino acids.  相似文献   

2.
Kapoor HL  Agrawal YK  Verma PC 《Talanta》1975,22(2):193-196
Cerium and lanthanum were determined gravimetrically by selective precipitation with N-m-tolyl-m-nitrobenzohydroxamic acid and separated from several metal ions such as Ag(+), Be(2+) , Pb(2+) , Mn(2+) , Cu(2+), Zn(2+) , Cd(2+) , Hg(2+) , Pd(2+) , Ga(3+) A1(3+) , Bi(3+) , Sb(3+), Sn(4+), Ce(3+) , Pr(3+) , Nd(3+) , Ti(4+), Zr(4+), Th(4+), V(5+) , Mo(6+) and U(6+) . The precipitates were weighted directly after drying at 110 degrees . The analytical results indicated the composition of the complexes to be (C(14)H(11)N(2)O(4))(n)M.  相似文献   

3.
Copper(II) ions react rapidly with sulfur from thiol groups, forming two distinct, intensely absorbing, short-lived intermediates, which decompose in a subsequent redox reaction to produce reduced copper and disulfides. In this study we report the results of a mechanistic study on the reaction between mercaptosuccinic acid, HO(2)CCH(2)CH(SH)CO(2)H, and Cu(2+)(aq) and [Cu(tren)H(2)O](2+), tren = tris(2-aminoethyl)amine. Spectroscopic and kinetic data indicate that in the presence of an excess of thiol, at least two distinct complexes are formed, with very different decomposition rate constants and an absorption maximum at 346 nm. Upon addition of thiol to [Cu(tren)H(2)O](2+)(1:1), a transient with a maximum at 380 nm appears, whereas in an excess of thiol this complex decomposes and again the 346 nm band is observed. The use of [Cu(tren)H(2)O](2+) enables to study the reaction of thiol with copper also in alkaline solution, where the rate of the overall process is slowed down greatly. The reactions were studied in detail, including the effect of dioxygen, and a possible reaction mechanism for the catalysed autoxidation process is proposed and discussed in reference to available literature data.  相似文献   

4.
The efficiency of Zn(2+), Cu(2+), Ni(2+), Co(2+), Fe(2+) or Mn(2+) labeling of the conformational and charge states of lysozyme was studied in H(2)O solvent at pH 2.5-6.8. Labeling of lysozyme was conducted with 50 M, 100 M and 500 M excess of the metal ion, resulting in the number of metal ions attached to lysozyme increasing two-fold over this range. At pH 6.2-6.8, Zn(2+), Cu(2+), Ni(2+), Co(2+) and Mn(2+) labeled the highly folded 7+ conformer and the 8+ and 9+ partially unfolded conformers of lysozyme with the same number of metal ion tags, with only Fe(2+) exhibiting no labeling. Lysozyme conserved its charge after metal ion labeling which shows at each charge state the divalent metal ion is replacing two protons. As the pH is lowered to 4.7-5.0 and 2.5-2.9, the labeling of lysozyme by Zn(2+), Cu(2+), Ni(2+), Co(2+) or Mn(2+) decreased in efficiency due to increased competition from protons for the aspartate and glutamate binding sites. The metal ions preferentially labeled the highly folded 7+ and partially unfolded 8+ conformers, but labeling decreased as the charge of lysozyme increased. In contrast to the other metal ions, Fe(2+) exhibited labeling of lysozyme only at the lowest pH of 2.8. At higher pH, the oxidation of Fe(2+) and formation of hydroxy-bridged complexes probably make the Fe(2+) unreactive towards lysozyme.  相似文献   

5.
More than 310 kinds of cluster ions of S(m) P(n) H(k) (k+) are observed in a single ESI mass spectrum of a mixed solution of serine and phosphoric acid. Some typical cluster ions are selected, activated by collision in a FT ICR cell, and the dissociation pathways were deduced in detail. For large singly protonated ions, the collisions cause the ejection of subunits of serine or phosphoric acid subsequently producing the ions of S(2) P(4) H(1) (1+) , which can be further dissociated by the loss of phosphoric acid molecules in turn and form the protonated serine dimer and monomer. However, for the doubly protonated ions, the dissociation pathways change from the loss of a protonated serine dimer for the ions of S(7) P(9) H(2) (2+) to the neutral loss of H(3) PO(4) for the ions of S(7) P(12) H(2) (2+) or the neutral loss of serine or H(3) PO(4) for the larger clusters, indicating the effect of cluster sizes on the process of dissociation. The structure of S(2) P(4) H(1) (1+) is suggested based on B3LYP/6-31G(d,p) calculations. The diversity and structural orderliness of the hetero-cluster ions are mainly attributed to the network of hydrogen bonds inside the cluster ions and the extraordinary amphotericity of the components.  相似文献   

6.
The Hpn and HspA proteins from H. pylori are significant for nickel homeostasis and protect the cells from higher concentrations of external metal ions. Both proteins have a unique histidine- and cysteine-rich domain at the C terminus. The interactions of Ni(2+), Bi(3+), Zn(2+) and Cd(2+) ions with C-terminal Ac-CCSTSDSHHQ-NH(2) and Ac-EEGCCHGHHE-NH(2) fragments from Hpn and the Ac-GSCCHTGNHD-NH(2) sequence from HspA were studied by potentiometry, mass spectrometry, circular dichroism and UV-Vis spectroscopy. Ac-CC-NH(2) was used as a reference peptide. The studies have shown that nickel ions form planar complexes with a {2S(-),N(-)} binding mode. The thiol sulfurs of the -Cys-Cys- motif are also the anchoring sites for Bi(3+), Zn(2+) and Cd(2+) ions. The studied protein fragments have the highest affinity for Bi(3+) ions. The thermodynamic stability of Ni(2+) is much higher then that of Zn(2+).  相似文献   

7.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1998,47(2):377-385
Ribonucleic acid (RNA) is used as a novel ionophore in plasticized poly(vinyl chloride) matrix membrane sensors for some transition metal ions. Membranes incorporating RNA and doped in Cu(2+), Cd(2+) and Fe(2+) display fast near-Nernstian and stable responses for these ions with cationic slopes of 31.1, 31.3 and 35.5 mV per decade, respectively, over the concentration range 10(-6)-10(-2) M and pH range 4-6.5. The cadmium RNA-based sensor shows no interference by Cu(2+), Fe(2+) Hg(2+) and Ag(+), which are known to interfere significantly with the solid-state CdS/Ag(2)S membrane electrode. The copper RNA-based sensor displays general potentiometric characteristics similar to those based on macrocyclic ionophores and organic ion exchangers and has the advantage of a better selectivity for Cu(2+) over some alkaline earth, divalent and transition metal ions. The iron RNA-based membrane sensor exhibits no interference by Hg(2+) and Zn(2+), which are known to interfere with other previously suggested sensors. The nature and composition of the RNA ionophore and its cadmium complex are examined using electrophoresis, Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques.  相似文献   

8.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

9.
Choi KY  Kim DW  Kim CS  Hong CP  Ryu H  Lee YI 《Talanta》1997,44(4):527-534
The formation and dissociation rates of some transition metal(II) and lanthanide(III) complexes of the 1,7,13-triaza-4,10,16-trioxacyclooctadecane N',N',N'-triacetic acid (1) and 1,7,13-triaza-4,10,16-trioxacyclooctadecane-N',N',N'- trimethylacetic acid (2) have been measured by the use of stopped-flow and conventional spectrophotometry. Experimental observations were made at 25.0 +/- 0.1 degrees C and at an ionic strength of 0.10 M KCl. The complexation of Zn(2+) and Cu(2+) ions with 1 and 2 proceeds through the formation of an intermediate complex (MH(3)L(+) *) in which the metal ion is incompletely coordinated. This may then lead to a final product in the rate-determining step. Between pH 4.68 and 5.55, the diprotonated (H(2)L(-)) form is revealed to be a kinetically active species despite its low concentration. The stability constants (log K (MH (3)L (+) *)) and specific base-catalyzed rate constants (k(OH)) of intermediate complexes have been determined from the kinetic data. The dissociation reactions of 1 and 2 complexes of Co(2+), Ni(2+), Zn(2+), Ce(3+), Eu(3+) and Yb(3+) were investigated with Cu(2+) ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed contributions. The buffer and Cu(2+) concentration dependence on the dissociation rate has also been investigated. The metal and ligand effects on the dissociation rate of some transition metal(II) and lanthanide(III) complexes are discussed in terms of the ionic radius of the metal ions, the side-pendant arms and the rigidity of the ligands.  相似文献   

10.
Sadler PJ  Viles JH 《Inorganic chemistry》1996,35(15):4490-4496
1H and (113)Cd NMR studies are used to investigate the Cd(2+) binding sites on serum albumin (67 kDa) in competition with other metal ions. A wide range of mammalian serum albumins possess two similar strong Cd(2+) binding sites (site A 113-124 ppm; site B 24-28 ppm). The two strong sites are shown not to involve the free thiol at Cys34. Ca(2+) influences the binding of Cd(2+) to isolated human albumin, and similar effects due to endogenous Ca(2+) are observed for intact human blood serum. (1)H NMR studies show that the same two His residues of human serum albumin are perturbed by Zn(2+) and Cd(2+) binding alike. Zn(2+) displaces Cd(2+) from site A which leads to Cd(2+) occupation of a third site (C, 45 ppm). The N-terminus of HSA is not the locus of the two strong Cd(2+) binding sites, in contrast to Cu(2+) and Ni(2+). After saturation of the N-terminal binding site, Cu(2+) or Ni(2+) also displaces Cd(2+) from site A to site C. The effect of pH on Cd(2+) binding is described. A common Cd(2+)/Zn(2+) binding site (site A) involving interdomain His residues is discussed.  相似文献   

11.
Masuda Y  Zhang Y  Yan C  Li B 《Talanta》1998,46(1):203-213
1,4,10,13-Tetrathia-7,16-diazacyclooctadecane (ATCO) and its binary extraction system containing lauric acid were studied extensively as extractants of lanthanide (M(3+)=La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+) and Gd(3+)) in 1,2-dichloroethane solution. The percentage extraction of Ce(3+) and Eu(3+) by ATCO were only measured to be less than 5% during a pH range 5.5-7.0 in NCS(-), ClO(4)(-) and PF(6)(-) mediums respectively, which indicates that ATCO alone has very low extractability to lanthanide, due to the bad fit of metal ions in its cavity. However, when lauric acid was added to the ATCO organic phase, because of forming rare earth adduct, the percentage extraction for lanthanide until Gd(3+) was enhanced in the binary system in comparison with that did not adopt the lauric acid within the pH range 6-7. The extraction species and extraction equilibrium constants logK(ex) were found to be CeLA(3)3HA, -8.5, EuLA(3)HA, -6.7, and GdLA(2)NO(3)2HA, -1.8, respectively. The separation factor between Eu(3+) and Ce(3+) was found to be 2.5, however, poor selectivity for lanthanide was observed. From Gd(3+) to Er(3+) and Lu(3+), the synergistic effect of the binary extraction system decreases with increasing atomic number. For gadolinium, the synergistic effect becomes much weaker than that of Ce(3+) and Eu(3+), no synergistic effect existed for erbium and lutetium. Thermodynamic data for synergistic solvent extraction are also reported in this paper. The order of organic phase stability constants of the extraction species is Sm (5.8)>Pr (5.7)>Eu (5.6)>Ce (5.3)>La (5.2)>Gd (2.8).  相似文献   

12.
Xue Y  Zhao H  Wu Z  Li X  He Y  Yuan Z 《The Analyst》2011,136(18):3725-3730
We have developed a colorimetric assay for the highly sensitive and selective detection of Cd(2+) using gold nanoparticles (AuNPs) cofunctionalized with 6-mercaptonicotinic acid (MNA) and L-Cysteine (L-Cys) through the formation of an Au-S bond. In the presence of Cd(2+), the aggregation of functionalized AuNPs occurred by means of a metal-ligand interaction that led to visible color changes. Most importantly, cofunctionalized AuNPs had better responses for Cd(2+) than that functionalized by either MNA or L-Cys. Cd(2+) could be detected by the colorimetric response of AuNPs that could be detected by the naked eye or a UV-vis spectrophotometer. The absorbance ratio (A(620)/A(523)) was linear with the Cd(2+) concentration in the range of 2.0 × 10(-7) to 1.7 × 10(-6) M. Under optimum conditions (2.0 × 10(-5) M MNA, 2.0 × 10(-6) M L-Cys and 0.020 M NaCl at pH 10.0), the detection limit (3σ) of Cd(2+) could be as low as 1.0 × 10(-7) M. Interference experiments showed that Pb(2+) and Cu(2+) caused a slight interference for Cd(2+) determination while other metal ions caused no interference. The proposed method was successfully applied to determine the concentration of Cd(2+) in environmental samples (lake water).  相似文献   

13.
Chitosan-coated magnetic nanoparticles (CCMNPs), modified with a biodegradable and eco-friendly biologic reagent, alpha-ketoglutaric acid (alpha-KA), was used as a magnetic nanoadsorbent to remove toxic Cu(2+) ions from aqueous solution. The prepared magnetic nanoadsorbents were characterized by FTIR, TEM, VSM, XRD, and EDS. Factors influencing the adsorption of Cu(2+), e.g., initial metal concentration, initial pH, contact time and adsorbent concentration were investigated. TEM images show that the dimension of multidispersed circular particles is about 30 nm and no marked aggregation occurs. VSM patterns indicate superparamagnetic properties of magnetic nanoadsorbents. EDS pictures confirm the presence of the Cu(2+) on the surface of magnetic nanoadsorbents. Equilibrium studies show that Cu(2+) adsorption data follow Langmuir model. The maximum adsorption capacity (q(max)) for Cu(2+) ions was estimated to be 96.15 mg/g, which was higher than that of pure CCMNPs. The desorption data show no significant desorption hysteresis occurred. In addition, the high stability and recovery capacity of the chitosan-coated magnetic nanoparticles modified with alpha-ketoglutaric acid (alpha-KA-CCMNPs) suggest that these novel magnetic nanoadsorbents have potential applications for removing Cu(2+) from wastewater.  相似文献   

14.
Examples of a new type of cryptophane molecule incorporating aromatic groups in the bridges (1-4) and, for the first time, being also supplied with three endo-positional ionizable carboxylic acid functions (1) have been synthesized and characterized. The cryptophane triester 2 yielded a solvate (channel inclusion compound) with trichloromethane and water, the X-ray crystal structure of which is reported. The complexation of 1 with low-molecular-weight alcohols in solution was studied, and the liquid-liquid extraction of different metal ions including alkali (Na(+), Cs(+)), alkaline earth (Mg(2+), Ca(2+), Sr(2+), Ba(2+)), and the lanthanide metal ions Eu(3+) and Yb(3+) in an extraction system containing metal nitrate buffer/H(2)O/1/CHCl(3) was examined. Molecular modeling calculations of the cryptophanes 1 and 2, and of the Eu(3+) complex of 1 were carried out contributing to the discussion.  相似文献   

15.
哒嗪衍生物是一类重要的芳香杂环化合物,哒嗪环常出现于农药、医药等具有生物活性的化合物中,研究哒嗪化合物的结构和性能的关系具有重要的科学意义和潜在的应用价值.作为中心桥联基的有机液晶化合物我们已有过系列报道[1-4].  相似文献   

16.
There is widespread interest in non-covalent bonding and weak interactions, such as electrostatic interactions, hydrogen bonding, solvophobic/hydrophobic interactions, metal-metal interactions, and π-π stacking, to tune the molecular assembly of planar π-conjugated organic and inorganic molecules. Inspired by the roles of metal-aromatic interaction in biological systems, such as in ion channels and metalloproteins, herein, we report the first example of the use of Hg(2+) -aromatic interactions to selectively control the assembly and disassembly of zinc-salen complexes in aqueous media; moreover, this process exhibited significant "turn on" fluorescent properties. UV/Vis and fluorescence spectroscopic analysis of the titration of Hg(2+) ions versus complex ZnL(1) revealed that the higher binding affinity of Hg(2+) ions (compared to 13 other metal ions) was ascribed to specific interactions between the Hg(2+) ions and the phenyl rings of ZnL(1); this result was also confirmed by (1)H NMR spectroscopy and HRMS (ESI). Further evidence for this type of interaction was obtained from the reaction of small-molecule analogue L(1) with Hg(2+) ions, which demonstrates the proximity of the N-alkyl group to the aromatic protons during Hg(2+)-ion binding, which led to the consequential H/D exchange reaction with D(2) O. DFT modeling of such interactions between the Hg(2+) ions and the phenyl rings afforded calculated distances between the C and Hg atoms (2.29 ?) that were indicative of C-Hg bond-formation, under the direction of the N atom of the morpholine ring. The unusual coordination of Hg(2+) ions to the phenyl ring of the metallosalen complexes not only strengthened the binding ability but also increased the steric effect to promote the disassembly of ZnL(1) in aqueous media.  相似文献   

17.
A method is presented for the determination of 2-10M nitric acid based on the fact that the presence of high nitric acid concentration causes an enhancement of the intensity of some bands in the fluorescence spectra of rare earth ions in solution. The 616-nm band of Eu(3+) shows the most dramatic intensity enhancement with increasing nitric acid concentration. The present method, based on the measurement of the ratio of Eu(3+) fluorescent band intensities is shown to be independent of Eu(3+) concentration and relatively free of interference. This robust method allows the presence of an interferent to be determined from the experimental data.  相似文献   

18.
Three phosphinic acid 1,4,7-triazacyclononane (TACN) derivatives bearing methylphosphinic (TRAP-H), methyl(phenyl)phosphinic (TRAP-Ph), or methyl(hydroxymethyl)phosphinic acid (TRAP-OH) pendant arms were investigated as members of a new family of efficient Ga(3+) chelators, TRAP ligands (triazacyclononane phosphinic acids). Stepwise protonation constants of ligands and stability constants of their complexes with Ga(3+), selected divalent metal, and Ln(3+) ions were determined by potentiometry. For comparison, equilibrium data for the metal ion-NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) systems were redetermined. These ligands exhibit high thermodynamic selectivity for Ga(3+) over the other metal ions (log K(GaL) - log K(ML) = 7-9) and a selective complexation of smaller Mg(2+) over Ca(2+). Stabilities of the Ga(3+) complexes are dependent on the basicity of the donor atoms: [Ga(NOTA)] (log K(GaL) = 29.6) > [Ga(TRAP-OH)] (log K(GaL) = 23.3) > [Ga(TRAP-H)] (log K(GaL) = 21.9). The [Ga(TRAP-OH)] complex exhibits unusual reversible rearrangement of the "in-cage" N(3)O(3) complex to the "out-of-cage" O(6) complex. The in-cage complex is present in acidic solutions, and at neutral pH, Ga(3+) ion binds hydroxide anion, induces deprotonation and coordination of the P-hydroxymethyl group(s), and moves out of the macrocyclic cavity; the hypothesis is supported by a combination of results from potentiometry, multinuclear nuclear magnetic resonance spectrometry, and density functional theory calculations. Isomerism of the phosphinate Ga(3+) complexes caused by a combination of the chelate ring conformation, the helicity of coordinated pendant arms, and the chirality of the coordinated phosphinate groups was observed. All Ga(3+) complexes are kinetically inert in both acidic and alkaline solutions. Complex formation studies in acidic solutions indicate that Ga(3+) complexes of the phosphinate ligands are formed quickly (minutes) and quantitatively even at pH <2. Compared to common Ga(3+) chelators (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives), these novel ligands show fast complexation of Ga(3+) over a broad pH range. The discussed TRAP ligands are suitable alternatives for the development of (68)Ga radiopharmaceuticals.  相似文献   

19.
Rabbit metallothionein (MT) 2A complexes with Cd(II), Zn(II), Ag(I), Cu(I), Hg(II), arsenite, monomethylarsonous acid (MMA), and dimethylarsinous acid (DMA) have been examined using ion-mobility measurements and mass spectrometry in a triple-quadrupole mass spectrometer equipped with a segmented second quadrupole that doubled as an ion-mobility cell [Guo, Y.; Wang, J.; Javahery, G.; Thomson, B. A.; Siu, K. W. M. An Ion-Mobility Spectrometer with Radial Collisional Focusing. Anal. Chem.2005, 77, 266-275]. The metal ions confer conformational rigidity on the MT complexes, which counteracts Coulombic repulsion among protons added as a result of electrospray. Triply and quadruply protonated Cd(7)MT2A have smaller cross-sections than the Cd(7)MT2A structure deduced from published NMR data. For the 6+ ions, the As(6)MT2A complex has a cross-section of 790 A(2); the MMA(10)MT2A complex, 920 A(2); and the DMA(20)MT2A complex, 1220 A(2). This increase in cross-section of the As(III) species, from As(3+) to MMA to DMA, is interpreted as a consequence of decreasing multiple coordination and increasing number of methyl groups.  相似文献   

20.
A cyclen-based ligand containing trans-acetate and trans-methylenephosphonate pendant groups, H 6DO2A2P, was synthesized and its protonation constants (12.6, 11.43, 5.95, 6.15, 2.88, and 2.77) were determined by pH-potentiometry and (1)H NMR spectroscopy. The first two protonations were shown to occur at the two macrocyclic ring N-CH 2-PO 3 (2-) nitrogens while the third and fourth protonations occur at the two phosphonate groups. In parallel with protonation of the two -PO 3 (2-) groups, the protons from the NH (+)-CH 2-PO 3 (2-) are transferred to the N-CH 2-COO (-) nitrogens. The stability constants of the Ca (2+), Cu (2+), and Zn (2+) (ML, MHL, MH 2L, and M 2L) complexes were determined by direct pH-potentiometry. Lanthanide(III) ions (Ln (3+)) form similar species, but the formation of complexes is slow; so, "out-of-cell" pH-potentiometry (La (3+), Eu (3+), Gd (3+), Y (3+)) and competitive spectrophotometry with Cu(II) ion (Lu (3+)) were used to determine the stability constants. By comparing the log K ML values with those of the corresponding DOTA (H 4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DOTP (H 8DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) complexes, the order DOTA < DO2A2P < DOTP was found for all the metal ion complexes examined here with the exception of the Ca (2+) complexes, for which the order is reversed. The relaxivity of Gd(DO2A2P) decreases between pH 2 and 7 but remains constant in the pH range of 7 < pH < 12 ( r 1 = 3.6 mM (-1) s (-1)). The linewiths of the (17)O NMR signals of water in the absence and presence of Gd(DO2A2P) (at pH = 3.45 and 8.5) between 274 and 350 K are practically the same, characteristic of a q = 0 complex. Detailed kinetic studies of the Ce (3+) and Gd (3+) complexes with DO2A2P showed that complex formation is slow and involves a high stability diprotonated intermediate Ln(H 2DO2A2P)*. Rearrangement of the diprotonated intermediate into the final complex is an OH (-) assisted process but, unlike formation of Ln(DOTA) complexes, rearrangement of Ln(H 2DO2A2P)* also takes place spontaneously likely as a result of transfer of one of the protons from a ring nitrogen to a phosphonate group. The order of the OH (-) assisted formation rates of complexes is DOTA > DO2A2P > DOTP while the order of the proton assisted dissociation rates of the Gd (3+) complexes is reversed, DOTP > DO2A2P > DOTA. (1)H and (13)C NMR spectra of Eu(DO2A2P) and Lu(DO2A2P) were assigned using two-dimensional correlation spectroscopy (2D COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear chemical shift correlation (HETCOR), and exchange spectroscopy (EXSY) NMR methods. Two sets of (1)H NMR signals were observed for Eu(DO2A2P) characteristic of the presence of two coordination isomers in solution, a twisted square antiprism (TSAP) and a square antiprism (SAP), in the ratio of ~93% and ~7%, respectively. Line shape analysis of the (1)H NMR spectra of Lu(DO2A2P) gave lower activation parameters compared to La(DOTP) for interconversion between coordination isomers. This indicates that the Ln(DO2A2P) complexes are less rigid probably due to the different size and spatial requirements of the carboxylate and phosphonate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号