首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donaldson EM  Mark E  Leaver ME 《Talanta》1984,31(1):89-96
The results obtained for silver in Canadian reference ores and concentrates and in zinc-processing products by three atomic-absorption spectrophotometric methods are compared. "Wet chemical" methods based on the decomposition of the sample with mixed acids yield more accurate results than those based on fire-assay collection techniques. A direct acid-decomposition method involving the determination of silver in a 20% v/v hydrochloric acid-1% v/v diethylenetriamine medium is recommended for the determination of approximately 10 mug g or higher levels of silver. A method based on chloroform extraction of the tribenzylamine-silver bromide ion-association complex from 0.08M potassium bromide-2M sulphuric acid is recommended for samples containing < 10 mug of silver per g.  相似文献   

2.
Donaldson EM 《Talanta》1982,29(12):1069-1075
A method for determining 0.1 μg/g or more of silver in ores and concentrates and 0.001 μg/ml or more of silver in zinc process solutions is described. Silver is separated from the matrix elements by chloroform extraction of the tribenzylamine—silver bromide ion-association complex from 0.08M potassium bromide—2M sulphuric acid and stripped with 9M hydrobromic acid. This solution is evaporated to dryness and organic material is destroyed with nitric and perchloric acids. Silver is determined by atomic-absorption spectrophotometry in an air—acetylene flame, at 328.1 nm, in a 10% v/v hydrochloric acid—1% v/v diethylenetriamine medium. Cadmium, bismuth and molybdenum are partly co-extracted but do not interfere. The method is also applicable to copper metal and copper-base alloys. Results obtained by this method are compared with those obtained by a fire-assay/atomic-absorption method.  相似文献   

3.
Donaldson EM  Wang M 《Talanta》1986,33(3):233-242
Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.  相似文献   

4.
Donaldson EM 《Talanta》1980,27(2):79-84
A simple and moderately rapid method for determining 0.001% or more of molybdenum in ores, iron and steel is described. After sample decomposition, molybdenum is separated from the matrix elements, except tungsten, by chloroform extraction of its alpha-benzoinoxime complex from a 1.75 M hydrochloric-0.13 M tartaric acid medium. Depending on the amount of tungsten present, molybdenum, if necessary, is back-extracted into concentrated ammonia solution and subsequently separated from coextracted tungsten by chloroform extraction of its xanthate complex from a 1.5M hydrochloric-0.13M tartaric acid medium. It is ultimately determined by atomic-absorption spectrophotometry, at 313.3 nm, in a 15% v/v hydrochloric acid medium containing 1,000 microg/ml of aluminium as the chloride, after evaporation of either extract to dryness with nitric, perchloric and sulphuric acids and dissolution of the salts in dilute ammonia solution.  相似文献   

5.
Tsukahara I  Tanaka M 《Talanta》1980,27(3):237-241
A simple and sensitive combined solvent extraction and atomic-absorption spectrometric method has been developed for the determination of silver in copper and lead metals and alloys and in zinc and selenium. Optimal conditions have been established for the extraction and determination of silver. Silver is extracted as the tri-n-octylmethylammonium-silver bromide complex and determined by atomic-absorption spectrometry by spraying the extract directly into the flame. As little as 0.2 mug of silver in a sample can be determined.  相似文献   

6.
A method is described for the determination of beryllium in geological and industrial samples. After dissolution of the sample in mineral acids, beryllium is separated from the matrix elements by chloroform extraction of its acetylacetonate from a solution of pH 7 containing ascorbic acid and EDTA. Beryllium is separated from the organic extract and from co-extracted aluminium by means of a column of the strongly acidic cation-exchanger Dowex 50; beryllium is adsorbed from a medium consisting of 60 % (v/v) tetrahydrofuran, 30 % (v/v) chloroform and 10 % (v/v) methanol containing hydrochloric acid, aluminium is removed with 0.4 M oxalic acid and after elution with 6 M hydrochloric acid, beryllium is determined by atomic-absorption spectrometry with a nitrous oxide-acetylene flame. The method was used to determine p.p.m. and sub-p.p.m. quantities of beryllium in geochemical reference materials, U3O3 and yellow cake samples, and manganese nodules.  相似文献   

7.
Tsukahara I  Tanaka M 《Talanta》1980,27(8):655-658
A simple and sensitive combined solvent-extraction and atomic-absorption spectrometric method has been developed for the determination of gold in silver, copper, lead, selenium and anode slime. Samples are decomposed with hydrochloric and nitric acids, and gold is extracted as the trioctylmethylammonium-gold bromide complex and determined by atomic-absorption spectrometry by direct spraying of the extract into the flame. Optimal conditions for the extraction and determination of gold have been established. As little as 0.5 mug of gold in a sample can be determined. The extraction of gold from hydrochloric or hydrobromic acid solution with trioctylamine or trioctylmethylammonium chloride (or bromide) has also been investigated.  相似文献   

8.
Donaldson EM  Leaver ME 《Talanta》1988,35(4):297-300
A recent graphite-furnace atomic-absorption method for determining approximately 0.2 mug/g or more of arsenic in ores, concentrates, rocks, soils and sediments, after separation from matrix elements by cyclohexane extraction of arsenic(III) xanthate from approximately 8-10M hydrochloric acid, has been modified to include an alternative hydride-generation atomic-absorption finish. After the extract has been washed with 10M hydrochloric acid-2% thiourea solution to remove co-extracted copper and residual iron, arsenic(III) in the extract is oxidized to arsenic(V) with bromine solution in carbon tetrachloride and stripped into water. Following the removal of bromine by evaporation of the solution, arsenic is reduced to arsenic(III) with potassium iodide in approximately 4M hydrochloric acid and ultimately determined to hydride-generation atomic-absorption spectrometry at 193.7 nm, with sodium borohydride as reductant. Interference from gold, platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, is eliminated by complexing them with thiosemicarbazide before the iodide reduction step. The detection limits for ores and related materials is approximately 0.1 mug of arsenic per g. Results obtained by this method are compared with those obtained previously by the graphite-furnace method.  相似文献   

9.
Donaldson EM 《Talanta》1979,26(12):1119-1123
Two simple, reliable and moderately rapid atomic-absorption methods for determining trace and minor amounts of bismuth in copper, nickel, molybdenum, lead and zinc concentrates and ores, and in non-ferrous alloys, are described. These methods involve the separation of bismuth from matrix elements either by chloroform extraction of its diethyldithiocarbamate (DDTC) complex, at pH 11.5–12.0, from a sodium hydroxide medium containing citric acid, tartaric acid, EDTA and potassium cyanide as complexing agents, or by co-precipitation with hydrous ferric oxide from an ammoniacal medium. Bismuth is ultimately determined, at 223.1 nm after evaporation of the extract to dryness in the presence of nitric and petchloric acids and dissolution of the salts in 20% v/v hydrochloric acid, or by dissolution of the hydrous oxide precipitate with the same acid solution, respectively. Results obtained by both methods are compared with those obtained spectrophotometrically by the iodide method after the separation of bismuth by DDTC and xanthate extractions.  相似文献   

10.
Korkisch J  Sorio A  Steffan I 《Talanta》1976,23(4):289-294
A method is described for the atomic-absorption determination of beryllium in liquid environmental samples after separation by solvent extraction and cation-exchange. The beryllium is first isolated from natural waters and beverages by chloroform extraction of its acetylacetonate from a solution at pH 7 and containing EDTA. The chloroform extract is then mixed in the ratio of 3:6:1 with tetrahydrofuran and methanol containing nitric acid, and passed through a column of Dowex 50 x 8 (H(+)-form). After removal of acetylacetone, chloroform and tetrahydrofuran by washing the resin bed with methanol-HNO(3), beryllium is eluted with 6M hydrochloric acid and determined by atomic-absorption spectroscopy. The method was successfully applied to determine beryllium in tap-, river- and sea-water samples, mineral waters and wines. Beryllium contents in the range from < 0.01 to 2.3 microg/l were found in these materials.  相似文献   

11.
An extensive study was made of the solvent extraction of cadmium and silver dithizonates into chloroform A few extractions of silver dithizonate were made into carbon tetrachloride. In most cases extraction curves of PH versus % metal extracted were obtained and reported in terms of the PH of 50% extraction. The shift of the extraction curves to higher PH values due to the effect of ions in the aqueous phase which complex with the cadmium or silver ions was investigated An equation was developed which would predict the PH of 50% extraction for the extraction from the solutions containing these complexing ions The effects of chloride, bromide and iodide ions on the extraction of cadmium and the effects of chloride, bromide, iodide, thiocyanate and thiosulfate ions on the extraction of silver. Extraction constants for the various extractions were determined.  相似文献   

12.
Donaldson EM 《Talanta》1975,22(10-11):837-841
A method for determining up to about 6% of tungsten in ores and mill products is described. It is based on the extraction of the yellow tungsten(V)-thiocyanate-diantipyrylmethane ion-association complex into chloroform from a 2.4M sulphuric acid-7.8M hydrochloric acid medium containing ammonium hydrogen fluoride as masking agent for niobium. The molar absorptivity of the complex is 1510 1. mole(-1).mm(-1) at 404 nm, the wavelength of maximum absorption. Moderate amounts of molybdenum and selenium may be present in the sample solution without causing appreciable error in the result. Interference from large amounts is avoided by separating these elements from tungsten by chloroform extraction of their xanthate complexes. Large amounts of copper interfere during the extraction of tungsten because of the precipitation of cuprous thiocyanate. Common ions, including uranium, vanadium, cobalt, titanium, arsenic and tellurium, do not interfere. The proposed method is also applicable to steel.  相似文献   

13.
Arya SP  Malla JL  Slathia V 《Talanta》1987,34(2):293-295
A selective spectrophotometric determination of copper is based on extraction of the copper-ferron complex with tribenzylamine in chloroform at low acidity, and measurement of the absorbance of the yellow extract at 410 nm. Beer's law is found to hold up to 8 microg/ml copper concentration. Of 30 elements tested, only molybdenum interferes. The ratio copper:ferron:tribenzylamine in the extracted species is 1:2:2.  相似文献   

14.
Donaldson EM 《Talanta》1980,27(6):499-505
A simple and moderately rapid method for determining 0.001% or more of tin in ores, concentrates and tailings, iron, steel and copper-, zinc-, aluminium-, titanium- and zirconium-base alloys is described. After sample decomposition, tin is separated from the matrix elements, except arsenic, by toluene extraction of its iodide from a 3M sulphuric acid-1.5M potassium iodide medium containing tartaric and ascorbic acids. It is finally back-extracted into a nitric-sulphuric acid solution containing hydrochloric acid to prevent the formation of an insoluble tin-arsenic compound and the resultant solution is evaporated to dryness. Tin is subsequently determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 235.4 nm in a 10% hydrochloric-0.5% tartaric acid medium containing 250 mug of potassium per ml. Co-extracted arsenic does not interfere. Results obtained by this method are compared with those obtained spectrophotometrically with gallein after the separation of tin by iodide extraction.  相似文献   

15.
Donaldson EM 《Talanta》1983,30(7):497-504
A method for determining ~ 0.001% or more of tantalum in ores and mill products is described. After fusion of the sample with sodium carbonate, the cooled melt is dissolved in dilute sulphuric-hydrofluoric acid mixture and tantalum is separated from niobium and other matrix elements by methyl isobutyl ketone extraction of its fluoride from 1M hydrofluoric acid-0.5M sulphuric acid. The extract is washed with a hydrofluoric-sulphuric acid solution of the same composition to remove co-extracted niobium, and tantalum is stripped with dilute hydrogen peroxide. This solution is acidified with sulphuric and hydrofluoric acids and evaporated to dryness, and the residue is dissolved in oxalic-hydrofluoric acid solution. Tantalum is ultimately determined spectrophotometrically after extraction of the blue hexafluorotantalate-Brilliant Green ion-association complex into benzene from a 0.05M sulphuric acid-0.5M hydrofluoric acid-0.2M oxalic acid medium. The apparent molar absorptivity of the complex is 1.19 x 10(4) l.mole(-1).mm(-1) at 640 nm, the wavelength of maximum absorption. Common ions, including iron, aluminium, manganese, zirconium, titanium, molybdenum, tungsten, vanadium, tin, arsenic and antimony, do not interfere. Results obtained by this method are compared with those obtained by an X-ray fluorescence method.  相似文献   

16.
A simple method is reported for standardizing 10?5–10?4 M dithizone solutions for titrimetric analysis. Dithizone in an anhydrous acetic acid/chloroform (4% v/v) medium is titrated with 2 × 10?4 M mercury(II) acetate in the same medium. The titratioin takes only a few minutes. The accuracy (+0.2%) and precision (r.s.d. = 0.7%) achieved are similar to those obtained by the classical extractive titration with silver(I).  相似文献   

17.
Donaldson EM 《Talanta》1990,37(10):955-964
A continuous hydride-generation atomic-absorption spectrometric method for determining approximately 0.02 mug/g or more of antimony in ores, concentrates, rocks, soils and sediments is described. The method involves the reduction of antimony(V) to antimony(III) by heating with hypophosphorous acid in a 4.5M hydrochloric acid-tartaric acid medium and its separation by filtration, if necessary, from any elemental arsenic, selenium and tellurium produced during the reduction step. Antimony is subsequently separated from iron, lead, zinc, tin and various other elements by a single cyclohexane extraction of its xanthate complex from approximately 4.5M hydrochloric acid/0.2M sulphuric acid in the presence of ascorbic acid as a reluctant for iron(III). After the extract is washed, if necessary, with 10% hydrochloric acid-2% thiourea solution to remove co-extracted copper, followed by 4.5M hydrochloric acid to remove residual iron and other elements, antimony(III) in the extract is oxidized to antimony(V) with bromine solution in carbon tetrachloride and stripped into dilute sulphuric acid containing tartaric acid. Following the removal of bromine by evaporation of the solution, antimony(V) is reduced to antimony(III) with potassium iodide in approximately 3M hydrochloric acid and finally determined by hydride-generation atomic-absorption spectrometry at 217.8 nm with sodium borohydride as reluctant. Interference from platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, is eliminated by complexing them with thiosemicarbazide during the iodide reduction step. Interference from gold is avoided by using a 3M hydrochloric acid medium for the hydride-generation step. Under these conditions gold forms a stable iodide complex.  相似文献   

18.
Tsukahara I  Yamamoto T 《Talanta》1981,28(8):585-589
A simple, rapid and sensitive combined solvent extraction and atomic-absorption spectrometric method has been developed for the determination of tellurium in copper, lead, selenium and blister copper. Tellurium is extracted as the trioctylmethylammonium-tellurium(IV) bromide complex into butyl acetate and determined by flame atomic-absorption spectrometry of the extract. As little as 1 mug of tellurium in a sample can be determined. The extraction of tellurium from hydrobromic acid solution with trioctylamine has also been investigated.  相似文献   

19.
M Donaldson E 《Talanta》1988,35(1):47-53
A method for determining approximately 0.2 mug/g or more of arsenic in ores, concentrates and related materials is described. After sample decomposition arsenic(V) is reduced to arsenic(III) with titanium(III) and separated from iron, lead, zinc, copper, uranium, tin, antimony, bismuth and other elements by cyclohexane extraction of its xanthate complex from approximately 8-10M hydrochloric acid. After washing with 10M hydrochloric acid-2% thiourea solution to remove residual iron and co-extracted copper, followed by water to remove chloride, arsenic is stripped from the extract with 16M nitric acid and ultimately determined in a 2% nitric acid medium by graphite-furnace atomic-absorption spectrometry, at 193.7 nm, in the presence of thiourea (which eliminates interference from sulphate) and palladium as matrix modifiers. Small amounts of gold, platinum and palladium, which are partly co-extracted as xanthates under the proposed conditions, do not interfere.  相似文献   

20.
de Blas OJ  de Paz JL  Mendez JH 《Talanta》1991,38(8):857-861
A method has been developed for the determination of dimethoxydithiophosphate (DDTP) by liquid-liquid extraction in a flow-injection analysis (FIA) system with detection by atomic-absorption spectrometry (AAS). It is based on the formation of the Cu(DDTP)(2) complex and its extraction into chloroform, and back-extraction of the copper with an ammonia buffer (pH 10). The method uses small amounts of samples, avoids handling errors and is fast and highly reproducible. It features a detection limit of 0.39 ppm DDTP (2.45 x 10(-6)M in the organic phase) and a relative standard deviation of 1.6%. The method has been applied to the determination of the organophosphorus pesticide malathion in an agricultural formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号