首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability constants of the 1:1 and 1:2 complexes of nickel and copper(II) with beta-ethylthioethylenethioglycollic acid have been determined at 25 degrees at ionic strength 1.0 (NaClO(4)). The values for the nickel complexes are K(1) = 1.11 +/- 0.06 x 10(2) (spectrophotometrically) or 1.25 +/- 0.11 x 10(2) (potentiometrically) and K(2) = 3.04 +/- 0.24 x 10(2) (potentiometrically). The corresponding values for the copper complexes are K(1) = 1.27 +/- 0.02 x 10(3) or 1.28 +/- 0.03 x 10(3) and K(2) = 7.29 +/- 0.30 x 10(2).  相似文献   

2.
Using relative rate methods, rate constants for the gas-phase reactions of divinyl sulfoxide [CH 2CHS(O)CHCH 2; DVSO] with NO 3 radicals and O 3 have been measured at 296 +/- 2 K, and rate constants for the reaction with OH radicals have been measured over the temperature range of 277-349 K. Rate constants obtained for the NO 3 radical and O 3 reactions at 296 +/- 2 K were (6.1 +/- 1.4) x 10 (-16) and (4.3 +/- 1.0) x 10 (-19) cm (3) molecule (-1) s (-1), respectively. For the OH radical reaction, the temperature-dependent rate expression obtained was k = 4.17 x 10 (-12)e ((858 +/- 141)/ T ) cm (3) molecule (-1) s (-1) with a 298 K rate constant of (7.43 +/- 0.71) x 10 (-11) cm (3) molecule (-1) s (-1), where, in all cases, the errors are two standard deviations and do not include the uncertainties in the rate constants for the reference compounds. Divinyl sulfone was observed as a minor product of both the OH radical and NO 3 radical reactions at 296 +/- 2 K. Using in situ Fourier transform infrared spectroscopy, CO, CO 2, SO 2, HCHO, and divinyl sulfone were observed as products of the OH radical reaction, with molar formation yields of 35 +/- 11, 2.2 +/- 0.8, 33 +/- 4, 54 +/- 6, and 5.4 +/- 0.8%, respectively, in air. For the experimental conditions employed, aerosol formation from the OH radical-initiated reaction of DVSO in the presence of NO was minor, being approximately 1.5%. The data obtained here for DVSO are compared with literature data for the corresponding reactions of dimethyl sulfoxide.  相似文献   

3.
Rate constants for the gas-phase reactions of OH radicals with dimethyl phosphonate [DMHP; (CH3O)2P(O)H] were measured over the temperature range of 278-351 K at atmospheric pressure of air using a relative rate method with 4-methyl-2-pentanone as the reference compound. The Arrhenius expression obtained was 1.01 x 10(-12) e((474 +/- 159)/T) cm(3) molecule(-1) s(-1), where the indicated error is two least-squares standard deviations and does not include uncertainties in the rate constants for the reference compound. Rate constants for the gas-phase reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], and triethyl phosphate [TEP, (C2H5O)3PO] were also measured at 278 and/or 283 K for comparison with a previous study (Aschmann, S. M.; Long, W. D.; Atkinson, R. J. Phys. Chem. A, 2006, 110, 7393). With the experimental procedures employed, experiments conducted at temperatures below the dew point where a water film was present on the outside of the Teflon reaction chamber resulted in measured rate constants which were significantly higher than those expected from the extrapolation of rate data obtained at temperatures (283-348 K) above the dew point. Using rate constants measured at > or = 283 K, the resulting Arrhenius expressions (in cm(3) molecule(-1) s(-1) units) are 6.25 x 10(-14) e((1538 +/- 112)/T) for DMMP (283-348 K), 9.03 x 10(-14) e((1539 +/- 27)/T) for DMEP (283-348 K), 4.35 x 10(-13) e((1444 +/- 148)/T) for DEMP (283-348 K), 4.08 x 10(-13) e((1485 +/- 328)/T) for DEEP (283-348 K), and 4.07 x 10(-13) e((1448 +/- 145)/T) for TEP (283-347 K), where the indicated errors are as above. Aerosol formation at 296 +/- 2 K from the reactions of OH radicals with these organophosphorus compounds was relatively minor, with aerosol yields of < or = 8% in all cases.  相似文献   

4.
Rate constants for the reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], triethyl phosphate [TEP, (C2H5O)3PO] and 1,3,5-trimethylbenzene have been measured over the temperature range 278-348 K at atmospheric pressure of air using a relative rate method. alpha-Pinene (for DEMP, DEEP, TEP and 1,3,5-trimethylbenzene) and di-n-butyl ether (for DMMP and DMEP) were used as the reference compounds, and rate constants for the reaction of OH radicals with di-n-butyl ether were also measured over the same temperature range using alpha-pinene and n-decane as the reference compounds. The Arrhenius expressions obtained for these OH radical reactions (in cm3 molecule(-1) s(-1) units) are 8.00 x 10(-14)e(1470+/-132)/T for DMMP (296-348 K), 9.76 x 10(-14)e(1520+/-14)/T for DMEP (296-348 K), 4.20 x 10(-13)e(1456+/-227)/T for DEMP (296-348 K), 6.46 x 10(-13)e(1339+/-376)/T for DEEP (296-348 K), 4.29 x 10(-13)e(1428+/-219)/T for TEP (296-347 K), and 4.40 x 10(-12)e(738+/-176)/T for 1,3,5-trimethylbenzene (278-347 K), where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the rate constants for the reference compounds. The measured rate constants for di-n-butyl ether are in good agreement with literature data over the temperature range studied (278-348 K).  相似文献   

5.
Complexation of the Brilliant Yellow tetraanion, 3(4-), by two new diazacoronand linked beta-cyclodextrin (beta CD) dimers 4,13-bis(2-(6A-deoxy-beta-cyclodextrin-6A-yl)aminooctylamidomethyl- and 4,13-bis(8-(6A-deoxy-beta-cyclodextrin-6A-yl)aminooctylamidomethyl)-4,13- diaza-1,7,10-trioxacyclopentadecane, 1 and 2, respectively, has been studied in aqueous solution. UV-visible spectrophotometric studies at 298.2 K, pH 10.0 and I = 0.10 mol dm-3 (NEt4ClO4) yielded complexation constants for the complexes 1 x 3(4-) and 2 x 3(4-), K1 = (1.08 +/- 0.01) x 10(5) and (6.21 +/- 0.08) x 10(3) dm3 mol-1, respectively. Similar studies at 298.2 K, pH 10.0 and I = 0.10 mol dm-3 (NaClO4) yielded K3 = (4.63 +/- 0.09) x 10(5) and (3.38 +/- 0.05) x 10(4) dm3 mol-1 for the complexation of 3(4-) by Na+ x 1 and Na+ x 2 to give Na+ x 1 x 3(4-) and Na+ x 2 x 3(4-), respectively. Potentiometric studies of the complexation of Na+ by 1 and 2 by the diazacoronand component of the linkers to give Na+ x 1 and Na+ x 2 yielded K2 = (2.00 +/- 0.05) x 10(3) and (1.8 +/- 0.05) x 10(3) dm3 mol-1, respectively, at 298.2 K and I = 0.10 mol dm-3(NEt4ClO4). For complexation of Na+ by 1 x 3(4-) and 2 x 3(4-) to give Na+ x 1 x 3(4-) and Na+ x 2 x 3(4-) K2K3/K1 = K4 = 8.6 x 10(2) and 9.8 x 10(3) dm3 mol-1, respectively. The pKaS of 1H4(4+) are 7.63 +/- 0.01, 6.84 +/- 0.02, 5.51 +/- 0.04 and 4.98 +/- 0.03, and those of 2H4(4+) are 8.67 +/- 0.02, 8.11 +/- 0.02, 6.06 +/- 0.02 and 5.14 +/- 0.05. The larger magnitude of K1 for 1 by comparison with K1 for 2 is attributed to the octamethylene linkers of 2 competing with 3(4-) for occupancy of the annuli of the beta CD entities while the competitive ability of the dimethylene linkers of 1 is less. A similar argument applies to the relative magnitudes of K3 for Na+ x 1 and Na+ x 2. Increased electrostatic attraction probably accounts for K3 > K1 for Na+ x 1 x 3(4-) and 1 x 3(4-) and for Na+ x 2 x 3(4-) and 2 x 3(4-). The lesser magnitudes of K2 and K4 for Na+ x 1 and Na+ x 1 x 3(4-) compared with those for Na+ x 2 and Na+ x 2 x 3(4-) are attributed to the octamethylene linkers of 2 producing a more hydrophobic environment for the diazacoronand than that produced by the dimethylene linkers of 1. 1H NMR spectroscopic studies and the syntheses of 1 and 2 are described.  相似文献   

6.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

7.
Wang L  Margerum DW 《Inorganic chemistry》2002,41(23):6099-6105
The disproportionation of chlorine dioxide in basic solution to give ClO2- and ClO3- is catalyzed by OBr- and OCl-. The reactions have a first-order dependence in both [ClO2] and [OX-] (X = Br, Cl) when the ClO2- concentrations are low. However, the reactions become second-order in [ClO2] with the addition of excess ClO2-, and the observed rates become inversely proportional to [ClO2-]. In the proposed mechanisms, electron transfer from OX- to ClO2(k1OBr- = 2.05 +/- 0.03 M(-1) x s(-1) for OBr(-)/ClO2 and k1OCl-= 0.91 +/- 0.04 M(-1) x s(-1) for OCl-/ClO2) occurs in the first step to give OX and ClO2-. This reversible step (k1OBr-/k(-1)OBr = 1.3 x 10(-7) for OBr-/ClO2, / = 5.1 x 10(-10) for OCl-/ClO2) accounts for the observed suppression by ClO2-. The second step is the reaction between two free radicals (XO and ClO2) to form XOClO2. These rate constants are = 1.0 x 10(8) M(-1) x s(-1) for OBr/ClO2 and = 7 x 10(9) M(-1) x s(-1) for OCl/ClO2. The XOClO2 adduct hydrolyzes rapidly in the basic solution to give ClO3- and to regenerate OX-. The activation parameters for the first step are DeltaH1(++) = 55 +/- 1 kJ x mol(-1), DeltaS1(++) = - 49 +/- 2 J x mol(-1) x K(-1) for the OBr-/ClO2 reaction and DeltaH1(++) = 61 +/- 3 kJ x mol(-1), DeltaS1(++) = - 43 +/- 2 J x mol(-1) x K(-1) for the OCl-/ClO2 reaction.  相似文献   

8.
In this paper, a new application of the hyper-Rayleigh scattering technique in determining multiple binding constants of a small molecule like bilirubin to a macromolecule like the protein human serum albumin has been demonstrated. Human serum albumin has two binding sites for bilirubin, and the binding constants have been measured by carrying out a second harmonic titration of the protein against bilirubin and vice versa. The measured binding constants K(1) = 1.5 +/- 0.43 x 10(7) M(-1) and K(2) = 1.01 +/- 0.16 x 10(6) M(-1) agree well with the reported values obtained by other methods.  相似文献   

9.
The rate constant of the reaction of BrO with CH(3)O(2) was determined to be k1 = (6.2 +/- 2.5) x 10(-12) cm3 molecule(-1) s(-1) at 298 K and 100-200 Torr of O2 diluent. Quoted uncertainty was two standard deviations. No significant pressure dependence of the rate constants was observed at 100-200 Torr total pressure of N2 or O2 diluents. Temperature dependence of the rate constants was further investigated over the range 233-333 K, and an Arrhenius type expression was obtained for k1 = 4.6 x 10(-13) exp[(798 +/- 76)/T] cm3 molecule(-1) s(-1). The product branching ratios were evaluated and the atmospheric implications were discussed.  相似文献   

10.
Equilibrium constants for bromine hydrolysis, K(1) = [HOBr][H(+)][Br(-)]/[Br(2)(aq)], are determined as a function of ionic strength (&mgr;) at 25.0 degrees C and as a function of temperature at &mgr; approximately 0 M. At &mgr; approximately 0 M and 25.0 degrees C, K(1) = (3.5 +/- 0.1) x 10(-)(9) M(2) and DeltaH degrees = 62 +/- 1 kJ mol(-)(1). At &mgr; = 0.50 M and 25.0 degrees C, K(1) = (6.1 +/- 0.1) x 10(-)(9) M(2) and the rate constant (k(-)(1)) for the reverse reaction of HOBr + H(+) + Br(-) equals (1.6 +/- 0.2) x 10(10) M(-)(2) s(-)(1). This reaction is general-acid-assisted with a Br?nsted alpha value of 0.2. The corresponding Br(2)(aq) hydrolysis rate constant, k(1), equals 97 s(-)(1), and the reaction is general-base-assisted (beta = 0.8).  相似文献   

11.
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the Z and E isomers of CF3CF=CHF, which we refer to as CF3CF=CHF(Z) and CF3CF=CHF(E). The rate constants k(Cl + CF3CF=CHF(Z)) = (4.36 +/- 0.48) x 10-11, k(OH + CF3CF=CHF(Z)) = (1.22 +/- 0.14) x 10-12, and k(O3 + CF3CF=CHF(Z)) = (1.45 +/- 0.15) x 10-21 cm3 molecule-1 s-1 were determined for the Z isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. The rate constants k(Cl + CF3CF=CHF(E)) = (5.00 +/- 0.56) x 10-11, k(OH + CF3CF=CHF(E)) = (2.15 +/- 0.23) x 10-12, and k(O3 + CF3CF=CHF(E)) = (1.98 +/- 0.15) x 10-20 cm3 molecule-1 s-1 were determined for the E isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. Both the Cl-atom and OH-radical-initiated atmospheric oxidation of CF3CF=CHF give CF3C(O)F and HC(O)F in molar yields indistinguishable from 100% for both the Z and E isomer. CF3CF=CHF(Z) has an atmospheric lifetime of approximately 18 days and a global warming potential (100 year time horizon) of approximately 6. CF3CF=CHF(E) has an atmospheric lifetime of approximately 10 days and a global warming potential (100 year time horizon) of approximately 3. CF3CF=CHF has a negligible global warming potential and will not make any significant contribution to radiative forcing of climate change.  相似文献   

12.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

13.
The rate constants for the gas-phase reactions of isopropyl- and tert-butylperoxy radicals with nitric oxide (NO) have been studied at 298 +/- 2 K and a total pressure of 3-4 Torr (He buffer) using a laser flash photolysis technique coupled with a time-resolved negative-ionization mass spectrometry. The alkyl peroxy radicals were generated by the reaction of alkyl radicals with excess O(2), where alkyl radicals were prepared by laser photolysis of several precursor molecules. The rate constants were determined to be k(i-C(3)H(7)O(2) + NO) = (8.0 +/- 1.5) x 10(-12) and k(t-C(4)H(9)O(2) + NO) = (8.6 +/- 1.4) x 10(-12) cm(3) molecule(-1) s(-1). The results in combination with our previous studies are discussed in terms of the systematic reactivity of alkyl peroxy radicals toward NO.  相似文献   

14.
The rate constants for the reactions of atomic bromine with dimethyl ether and diethyl ether were measured from approximately 300 to 350 K using the relative rate method. Both isooctane and isobutane were used as the reference reactants, and the rate constants for the reactions of these hydrocarbons were measured relative to each other over the same temperature range. The kinetic measurements were made by photolysis of dilute mixtures of bromine, the reference reactant, and the test reactant in mixtures of argon and oxygen at a total pressure of 1 atm. The resulting ratios of rate constants were combined with the absolute rate constant as a function of temperature for the reference reaction of Br with isobutane to calculate absolute rate constants for the reactions of Br with isooctane, dimethyl ether, and diethyl ether. The absolute rate constant, in the units cm3 molecule(-1) s(-1), for the reaction of Br with dimethyl ether was given by k = (3.8 +/- 2.4) x 10(-10) exp(-(3.54 +/- 0.21) x 10(3)/T) while for the reaction of Br with diethyl ether the rate constant is given by k = (2.8 +/- 2.7) x 10(-10) exp(-(2.44 +/- 0.32) x 10(3)/T). On the same basis, the rate constant for the reaction of Br with isooctane is given by k = (3.34 +/- 0.59) x 10(-12) exp(-(1.80 +/- 0.11) x 10(3)/T). In each case, the activation energy of the reaction is significantly smaller than the endothermicity of the reaction. This is discussed in terms of a complex mechanism for these reactions.  相似文献   

15.
The hydrolysis profile of the bifunctional trinuclear phase II clinical agent [(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](4+) (BBR3464, 1) has been examined using [(1)H,(15)N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy. Reported are estimates of the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pK(a1) approximately equal to pK(a2) approximately equal to pK(a3)). The equilibrium constants for the aquation determined by NMR at 298 and 310 K (I = 0.1 M, pH 5.3) are similar, pK(1) = pK(2) = 3.35 +/- 0.04 and 3.42 +/- 0.04, respectively. At lower ionic strength (I = 0.015 M, pH 5.3) the values at 288, 293, and 298 K are pK(1) = pK(2) = 3.63 +/- 0.05. This indicates that the equilibrium is not strongly ionic strength or temperature dependent. The aquation and anation rate constants for the two-step aquation model at 298 K in 0.1 M NaClO(4) (pH 5.3) are k(1) = (7.1 +/- 0.2) x 10(-5) s(-1), k(-1) = 0.158 +/- 0.013 M(-1) s(-1), k(2) = (7.1 +/- 1.5) x 10(-5) s(-1), and k(-2) = 0.16 +/- 0.05 M(-1) s(-1). The rate constants in both directions increase 2-fold with an increase in temperature of 5 K, and rate constants increase with a decrease in solution ionic strength. A pK(a) value of 5.62 plus minus 0.04 was determined for the diaqua species [(trans-Pt(NH(3))(2)(OH(2)))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)-NH(2))(2))](6+) (3). The speciation profile of 1 under physiological conditions is explored and suggests that the dichloro form predominates. The aquation of 1 in 15 mM phosphate was also examined. No slowing of the initial aquation was observed, but reversible reaction between aquated species and phosphate does occur.  相似文献   

16.
The rate constants for the reactions of OH and OD with 2-methyl-3-buten-2-ol (MBO) have been measured at 2, 3, and 5 Torr total pressure over the temperature range 300-415 K using a discharge-flow system coupled with laser induced fluorescence detection of OH. The measured rate constants at room temperature and 5 Torr for the OH + MBO reaction in the presence of O2 and the OD + MBO reaction are (6.32 +/- 0.27) and (6.61 +/- 0.66) x 10(-11) cm3 molecule(-1) s(-1), respectively, in agreement with previous measurements at higher pressures. However, the rate constants begin to show a pressure dependence at temperatures above 335 K. An Arrhenius expression of k0 = (2.5 +/- 7.4) x 10(-32) exp[(4150 +/- 1150)/T] cm6 molecule(-2) s(-1) was obtained for the low-pressure-limiting rate constant for the OH + MBO reaction in the presence of oxygen. Theoretical calculations of the energetics of the OH + MBO reaction suggest that the stability of the different HO-MBO adducts are similar, with predicted stabilization energies between 27.0 and 33.4 kcal mol(-1) relative to the reactants, with OH addition to the internal carbon predicted to be 1-4 kcal mol(-1) more stable than addition to the terminal carbon. These stabilization energies result in estimated termolecular rate constants for the OH + MBO reaction using simplified calculations based on RRKM theory that are in reasonable agreement with the experimental values.  相似文献   

17.
alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.2 K and I = 0.10 mol dm(-3)(NaClO(4)) spectrophotometric UV-visible studies yield the sequential formation constants: K(11) = (2.83 +/- 0.28) x 10(5) dm(3) mol(-1) for alphaCD.E-(-), K(21) = (6.93 +/- 0.06) x 10(3) dm(3) mol(-1) for (alphaCD)(2).E-3(-), K(11) = (1.24 +/- 0.12) x 10(5) dm(3) mol(-1) for betaCD.E-(-), K(21) = (1.22 +/- 0.06) x 10(4) dm(3) mol(-1) for (betaCD)(2).E-(-), K(11) = (3.08 +/- 0.03) x 10(5) dm(3) mol(-1) for .E-3(-), K(11) = (8.05 +/- 0.63) x 10(4) dm(3) mol(-1) for .E-3(-) and K(12) = (2.42 +/- 0.53) x 10(4) dm(3) mol(-1) for .(E-3(-))(2). (1)H ROESY NMR studies show that complexation of E-3(-) in the annuli of alphaCD, betaCD, 1 and 2 occurs. A variable-temperature (1)H NMR study yields k(298 K)= 6.7 +/- 0.5 and 5.7 +/- 0.5 s(-1), DeltaH = 61.7 +/- 2.7 and 88.1 +/- 4.2 kJ mol(-1) and DeltaS = -22.2 +/- 8.7 and 65 +/- 13 J K(-1) mol(-1) for the interconversion of the dominant includomers (complexes with different orientations of alphaCD) of alphaCD.E-3(-) and (alphaCD)(2).E-3(-), respectively. The existence of E-3(-) as the sole isomer was investigated through an ab initio study.  相似文献   

18.
The differences in the reactivities of the square-planar complexes cis-[Rh(CO)2I2]- (1) and cis-[Ir(CO)2I2]- (2), involved in the catalytic carbonylation of olefins, are investigated, with P(C6H5)4+ as the counterion, by ambient- and high-pressure NMR and IR spectroscopy. Under an elevated pressure of CO, 1 and 2 form the [M(CO)3I] complexes with the equilibrium constants KIr approximately 1.8 x 10(-3) and KRh approximately 4 x 10(-5). The ratio KIr/KRh close to 50 shows that, under catalytic conditions (a few megapascals), only complex 1 remains in the anionic form, while a major amount of the iridium analogue 2 is converted to a neutral species. The oxidative addition reactions of HI with 1 and 2 give two monohydrides of different geometries, mer,trans-[HRh(CO)2I3]- (3) and fac,cis-[HIr(CO)2I3]- (4), respectively. Both hydrides are unstable at ambient temperature and form, within minutes for Rh and within hours for Ir, the corresponding cis-[M(CO)2I2]- (1 or 2) and [M(CO)2I4]- (5 or 6) species and H2. When an H2 pressure of 5.5 MPa is applied to a nitromethane solution of complex 2, ca. 50% of 2 is transformed to cis-dihydride complexes. The formation of cis,cis,cis-[IrH2(CO)2I2]- (8a) is followed by intermolecular rearrangements to form cis,trans,cis-[IrH2(CO)2I2]- (8b) and cis,cis,trans-[IrH2(CO)2I2]- (8c). A small amount of a dinuclear species, [Ir2H(CO)4I4]x- (9), is also observed. The formation rate constants for 8a and 8b at 262 K are k1(262) = (4.42 +/- 0.18) x 10(-4) M-1 s-1, k-1(262) = (1.49 +/- 0.07) x 10(-4) s-1, k2(262) = (2.81 +/- 0.04) x 10(-5) s-1, and k-2(262) = (5.47 +/- 0.16) x 10(-6) s-1. The two equilibrium constants K1(262) = [8a]/([2][H2]) = 2.97 +/- 0.03 M-1 and K2(262) = [8b]/[8a] = 5.13 +/- 0.10 show that complex 8b is the thermodynamically stable addition product. However, no similar H2 addition products of the rhodium analogue 1 are observed. The pressurization with H2 of a solution containing 2 and 6 give the monohydride 4, the dihydrides 8a and 8b, the dinuclear complex 9, and the two new complexes [Ir(CO)2I3] (10) and [HIr(CO)2I2] (11). The reactions of the iridium complexes with H2 and HI are summarized in a single scheme.  相似文献   

19.
Solvated cobalt(II) ions in neat 1,3-propanediamine (tn) and n-propylamine (pa) have been characterized by electronic absorption spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The equilibrium between tetrahedral and octahedral geometry for cobalt(II) ion has been observed in a neat pa solution, but not in neat diamine solutions such as tn and ethylenediamine (en). The thermodynamic parameters and equilibrium constant at 298 K for the geometrical equilibrium in pa were determined to be DeltaH degrees = -36.1 +/- 2.3 kJ mol(-1), DeltaS degrees = -163 +/- 8 J mol(-1) K(-1), and K(298) = 6.0 x 10(-3) M(-2), where K = [Co(pa)(6)(2+)]/{[Co(pa)(4)(2+)][pa](2)}. The equilibrium is caused by the large entropy gain in formation of the tetrahedral cobalt(II) species. The solvent exchange of cobalt(II) ion with octahedral geometry in tn and pa solutions has been studied by the (14)N NMR line-broadening method. The activation parameters and rate constants at 298 K for the solvent exchange reactions are as follows: DeltaH() = 49.3 +/- 0.9 kJ mol(-1), DeltaS() = 25 +/- 3 J mol(-1) K(-1), DeltaV() = 6.6 +/- 0.3 cm(3) mol(-1) at 302.1 K, and k(298) = 2.9 x 10(5) s(-1) for the tn exchange, and DeltaH() = 36.2 +/- 1.2 kJ mol(-1), DeltaS() = 35 +/- 6 J mol(-1) K(-1), and k(298) = 2.0 x 10(8) s(-1) for the pa exchange. By comparison of the activation parameters with those for the en exchange of cobalt(II) ion, it has been confirmed that the kinetic chelate strain effect is attributed to the large activation enthalpy for the bidentate chelate opening and that the enthalpic effect is smaller in the case of the six-membered tn chelate compared with the five-membered en chelate.  相似文献   

20.
Elenkova NG  Popova E 《Talanta》1975,22(10-11):925-929
The reaction of magnesium or aluminium ions with Eriochrome Cyanin RC in alkaline medium leads to formation of a complex of type ML. The molar absorptivities of the complexes are 1.90 +/- 0.14 x 10(3)1. mole(-1).cm(-1) at 570 nm for the magnesium complex and 3.87 +/- 0.04 x 10(4) at 555 nm for the aluminium complex. The conditional stability constants of the complexes were determined at various pH values, and hence the overall formation constants, which were found to be log beta(111) = 8.65 +/- 0.06 for MgOHL, log beta(121) = 22.29 +/- 0.05 for AlH(2)L, log beta(111) = 18.25 +/- 0.14 for AlHL, and log beta(101) = 13.66 +/- 0.01 for AlL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号