共查询到20条相似文献,搜索用时 15 毫秒
1.
Maria C. Blanco Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2012,68(3):o131-o140
The structures are reported of nine closely related tetrahydro‐1,4‐epoxy‐1‐benzazepines carrying pendant heterocyclic substituents, namely: 2‐exo‐(5‐nitrofuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C14H12N2O4, (I), 7‐fluoro‐2‐exo‐(1‐methyl‐1H‐pyrrol‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H15FN2O, (II), 7‐fluoro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNO2, (III), 7‐fluoro‐2‐exo‐(3‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (IV), 7‐fluoro‐2‐exo‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (V), 7‐chloro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14ClNO2, (VI), 2‐exo‐(5‐methylfuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO3, (VII), 2‐exo‐(3‐methylthiophen‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO2S, (VIII), and 2‐exo‐(5‐nitrofuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H11F3N2O5, (IX). All nine compounds crystallize in centrosymmetric space groups as racemic mixtures with configuration (2RS,4SR). There are no direction‐specific interactions between the molecules in (V). The molecules in (III), (IV), (VI) and (VII) are linked into simple chains, by means of a single C—H...O hydrogen bond in each of (III), (VI) and (VII), and by means of a single C—H...π(arene) hydrogen bond in (IV), while the molecules in (VIII) are linked into a chain of rings. In each of (I) and (II), a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond links the molecules into sheets, albeit of completely different construction in the two compounds. In (IX), the sheet structure is built from a combination of four independent C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. Comparisons are made with some related compounds. 相似文献
2.
Sandra L. Gmez Walter Raysth Alirio Palma Justo Cobo John N. Low Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(9):o519-o523
In (2SR,4RS)‐7‐chloro‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13Cl2NO, (I), the molecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge‐fused R33(12) rings. The isomeric compound (2S,4R)‐7‐chloro‐2‐exo‐(2‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), crystallizes as a single 2S,4R enantiomer and the molecules are linked into a three‐dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (2S,4R)‐7‐chloro‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H16ClNO, (III), are also linked into a three‐dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents. 相似文献
3.
Carlos M. Sanabria Sandra L. Gmez Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(11):o540-o546
(2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H17NO, (I), crystallizes with Z′ = 2 in the space group P21; the two independent molecules have the same absolute configuration, although this configuration is indeterminate. The molecules of each type are linked by a combination of C—H...O and C—H...π(arene) hydrogen bonds to form two independent sheets, each containing only one type of molecule. (2SR,4RS)‐7‐Methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H19NO, (II), crystallizes as a true racemate in the space group P21/c, and a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into sheets, each containing equal numbers of the two enantiomorphs. (2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐7‐trifluoromethyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H16F3NO2, (III), crystallizes as a single enantiomorph, as for (I), but now with Z′ = 1 in the space group P212121; again, the absolute configuration is indeterminate. A single C—H...π(arene) hydrogen bond links the molecules of (III) into simple chains. (2S,4R)‐8‐Chloro‐9‐methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H18ClNO, (IV), crystallizes as a single enantiomorph of well defined configuration, in the space group P212121, where two independent C—H...π(arene) hydrogen bonds link the molecules into a single three‐dimensional framework structure. 相似文献
4.
Sandra L. Gmez Carlos M. Sanabria Alirio Palma Ali Bahsas Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2009,65(9):o465-o469
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds. 相似文献
5.
Lina M. Acosta Ali Bahsas Alirio Palma Justo Cobo John N. Low Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(9):o514-o518
(2SR,4RS)‐7‐Chloro‐2‐exo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the molecules are linked into a chain of edge‐fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereoisomer (2RS,4RS)‐7‐chloro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two‐centre C—H...N hydrogen bond and a three‐centre C—H...(O,N) hydrogen bond combine to link the molecules into a complex chain of rings. In (2R,4R)‐7‐fluoro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the molecules are linked by a single C—H...O hydrogen bond into simple chains, but the molecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the supramolecular aggregation, consequent upon modest changes in the peripheral substituents. 相似文献
6.
Maria C. Blanco Alirio Palma Ali Bahsas Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2009,65(9):o487-o491
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond. 相似文献
7.
Sergio A. Guerrero Juan E. Ramírez Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(2):168-177
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII). 相似文献
8.
Sandra L. Gmez Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(4):o233-o240
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds. 相似文献
9.
Mario A. Macías Lina M. Acosta Carlos M. Sanabria Alirio Palma Pascal Roussel Gilles H. Gauthier Leopoldo Suescun 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(5):363-372
Tetrahydro‐1‐benzazepines have been described as potential antiparasitic drugs for the treatment of chagas disease and leishmaniasis, two of the most important so‐called `forgotten tropical diseases' affecting South and Central America, caused by Trypanosoma cruzi and Leishmania chagasi parasites, respectively. Continuing our extensive work describing the structural characteristics of some related compounds with interesting biological properties, the crystallographic features of three epoxy‐1‐benzazepines, namely (2SR,4RS)‐6,8‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (1), (2SR,4RS)‐6,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (2), and (2SR,4RS)‐8,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (3), all C22H21NO, and two 1‐benzazepin‐4‐ols, namely 7‐fluoro‐cis‐2‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C18H18FNO, (4), and 7‐fluoro‐cis‐2‐[(E)‐pent‐1‐enyl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C15H20FNO, (5), are described. Some peculiarities in the crystallization behaviour were found, involving significant variations in the crystalline structures as a result of modest changes in the peripheral substituents in (1)–(3) and the occurrence of discrete disorder due to the molecular overlay of enantiomers with more than one conformation in (5). In particular, an interesting phase change on cooling was observed for compound (5), accompanied by an approximate fourfold increase of the unit‐cell volume and a change of the Z′ value from 1 to 4. This transition is a consequence of the partial ordering of the pentenyl chains in half of the molecules breaking half of the symmetry axes observed in the room‐temperature structure of (5). The structural assembly in all the title compounds is characterized by not only (N,O)—H…(O,N) hydrogen bonds, but also by unconventional C—H…O contacts, resulting in a wide diversity of packing. 相似文献
10.
Jorge Trilleras Jairo Quiroga Justo Cobo John N. Low Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(12):o665-o670
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites. 相似文献
11.
Juan C. Castillo Rodrigo Abonía Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2009,65(6):o303-o310
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond. 相似文献
12.
Zhen‐Feng Zhang Dong‐Chao Wang Jian‐Ge Wang Gui‐Rong Qu 《Acta Crystallographica. Section C, Structural Chemistry》2007,63(9):o524-o527
The molecules of 2,2,2‐trichloro‐N,N′‐diphenylethane‐1,1‐diamine, C14H13Cl3N2, are linked into (040) sheets by a combination of C—H...Cl and C—H...π(arene) hydrogen bonds. In 2,2,2‐trichloro‐N,N′‐bis(4‐methylphenyl)ethane‐1,1‐diamine, C16H17Cl3N2, the molecules are linked into C(7) chains by two independent C—H...Cl hydrogen bonds and one Cl...Cl contact. 相似文献
13.
Haruvegowda Kiran Kumar Hemmige S. Yathirajan Nagaraj Manju Balakrishna Kalluraya Ravindranath S. Rathore Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(6):768-776
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds. 相似文献
14.
Andrs F. Ypes Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(3):307-312
(2R,4S)‐2‐(3‐Methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C19H17NOS, (I), crystallizes with a single enantiomer in each crystal, whereas its geometrical isomer (2RS,4SR)‐2‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐naphtho[1,2‐b]azepine, (II), and (2RS,4SR)‐2‐(5‐bromothiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C18H14BrNOS, (III), both crystallize as racemic mixtures. A combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds links the molecules of (I) into a three‐dimensional framework; the molecules of (II) are linked into a C(4)C(4)[R22(7)] chain of rings by a combination of C—H...N and C—H...O hydrogen bonds; and in (III), where Z′ = 2, a combination of four C—H...π(arene) hydrogen bonds and two C—H...π(thienyl) hydrogen bonds links the molecules into complex sheets. Comparisons are made with the assembly patterns in some aryl‐substituted 1,4‐epoxynaphtho[1,2‐b]azepines. 相似文献
15.
Lina M. Acosta Andrs F. Yepes Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(2):162-171
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond. 相似文献
16.
Juan C. Castillo Rodrigo Abonía Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2009,65(8):o423-o430
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar. 相似文献
17.
Anwar Usman Ibrahim Abdul Razak Suchada Chantrapromma Sujit K. Ghorai Dipakranjan Mal Hoong‐Kun Fun Gur Dayal Nigam 《Acta Crystallographica. Section C, Structural Chemistry》2001,57(9):1118-1119
The title compound, C19H16O, crystallizes with two molecules of opposite chirality in the asymmetric unit. In both molecules, the naphthalene and cyclopentanone moieties are individually planar. The two cyclopentane rings adopt envelope conformations, while the cyclohexane ring adopts a boat conformation. 相似文献
18.
Lina M. Acosta Alirio Palma Ali Bahsas Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(4):o206-o208
Molecules of the title compound, C18H16FNO, are linked into a three‐dimensional framework structure by a combination of two C—H...O hydrogen bonds and three C—H...π(arene) hydrogen bonds. Comparisons are made with the (2R,4R) diastereoisomer and with the corresponding pair of diastereoisomeric 7‐chloro analogues. 相似文献
19.
Ziwei Gao Caiyun Zhang Mingyuan Dong Lingxiang Gao Guofang Zhang Zhaotie Liu Gaofeng Wang Denghui Wu 《应用有机金属化学》2006,20(2):117-124
Two 4‐coordinated titanocene complexes, [(η5‐C5H5)2Ti(O,O′)(5‐NO2‐OCC6H3)] (I) and [(η5‐C5H5)2Ti(2‐OH‐5‐NO2‐O2CC6H3)2] (II), have been synthesized by reaction of Cp2TiCl2 and 5‐nitrosalicylic acid in aqueous media. Single‐crystal X‐ray analyses of I and II display the mononuclear forms of TiIV, and geometries at titanium atoms are distorted tetrahedrons, while the coordination environment at TiIV in complex I is different from that in complex II. Crystallographic characterization revealed that each of the complexes exhibits a three‐dimensional framework constructed through weak interactions, which are H‐bonding, π–π stacking and C–H·π interactions, but they differ greatly when forming the three‐dimensional network structure in both complexes. The results show that the dramatic change of conditions has great effect on the molecular structure of 5‐nitrosalicylate titanocene, thereby significantly influencing the weak interactions and the specific framework structure. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
20.
Carlos M. Sanabría Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):332-337
In the structure of (6R*,11R*)‐5‐acetyl‐11‐ethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C19H19NO3, (I), the molecules are linked into sheets by a combination of O—H...O and C—H...O hydrogen bonds; in the structure of the monomethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐2‐methyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C20H21NO3, (II), the molecules are linked into simple C(7) chains by O—H...O hydrogen bonds; and in the structure of the dimethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐1,3‐dimethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C21H23NO3, (III), a combination of O—H...O, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into a three‐dimensional framework structure. None of these structures exhibits the R22(8) dimer motif characteristic of simple carboxylic acids. 相似文献