首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In order to explore the chemistry of the bidentate ligand 2,2‐dimethylpropane‐1,3‐diyl diisocyanide and to investigate the effect of counter‐ions on the polymeric structure of (2,2‐dimethylpropane‐1,3‐diyl diisocyanide)silver(I) complexes, the title polymeric compound, [AgI(C7H10N2)]n, was synthesized by treatment of 2,2‐dimethylpropane‐1,3‐diyl diisocyanide with AgI. X‐ray powder diffraction studies show, as expected, a polymeric structure, similar to the very recently reported Cl and NO3 analogues [AgX(C7H10N2)]n (X = Cl or NO3). In the title structure, the AgI centre is bridged to two adjacent AgI neighbours by bidentate 2,2‐dimethylpropane‐1,3‐diyl diisocyanide ligands via the NC groups to form [Ag{CNCH2C(CH3)2CH2NC}]n chains. The iodide counter‐ions crosslink the AgI centres of the chains to form a two‐dimensional polymeric {[Ag{CNCH2C(CH3)2CH2NC}]I}n network. This study also shows that this bidentate ligand forms similar polymeric structures on treatment with AgX, regardless of the nature of the counter‐ion X, and also has a strong tendency to form polymeric complexes rather than dimeric or trimeric ones.  相似文献   

2.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

3.
In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N‐hydroxypyridine‐2‐carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two‐dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) Å, markedly shorter than that of 6.452 (1) Åvia the nitrate bridge. The two‐dimensional structure is fishscale‐like, and can be described as pyaoxH2‐bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three‐dimensional network.  相似文献   

4.
In the crystal structure of the title two‐dimensional metal–organic polymeric complex, [Cd2Cl4(C8H14N2O4)(H2O)2]n, the asymmetric unit contains a crystallographically independent CdII cation, two chloride ligands, an aqua ligand and half a 2,2′‐(piperazine‐1,4‐diium‐1,4‐diyl)diacetate (H2PDA) ligand, the piperazine ring centroid of which is located on a crystallographic inversion centre. Each CdII centre is six‐coordinated in an octahedral environment by an O atom from an H2PDA ligand and an O atom from an aqua ligand in a trans disposition, and by four chloride ligands arranged in the plane perpendicular to the O—Cd—O axis. The complex forms a two‐dimensional layer polymer containing [CdCl2]n chains, which are interconnected into an extensive three‐dimensional hydrogen‐bonded network by C—H...O, C—H...Cl and O—H...O hydrogen bonds.  相似文献   

5.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

6.
The solution reaction of AgNO3 and 2‐aminopyrazine (apyz) in a 1:1 ratio gives rise to the title compound, [Ag2(NO3)2(C4H5N3)2]n, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent AgI cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the AgI centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry‐related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one‐dimensional AgI–apyz chains, which are further extended by μ2‐κ2O:O nitrate anions into a two‐dimensional (4,4) sheet. N—H...O and Capyz—H...O hydrogen bonds connect neighboring sheets to form a three‐dimensional supramolecular framework.  相似文献   

7.
In the polymeric title compound, [CuCl2(C6H6N4)]n, each CuII ion is five‐coordinated by four basal atoms (two N atoms from a 2,2′‐biimidazole mol­ecule and two Cl anions) and one axial Cl anion, in a distorted square‐pyramidal coordination geometry. Cl anions bridge the {Cu(C6H6N4)Cl} units into one‐dimensional linear chains, which are reinforced by π–π inter­actions. Adjacent linear chains are linked by N—H⋯Cl hydrogen bonds, resulting in a grid layer. The hydrogen‐bonding pattern can be described in graph‐set notation as C(9)R(9)R(14). This study extends our knowledge of the multifunctional properties of the 2,2′‐biimidazole ligand and of the coordination stereochemistry of copper(II).  相似文献   

8.
As part of a study on the effect of different counter‐anions on the self‐assembly of coordination complexes, a new dinuclear AgI complex, [Ag2(C14H12N4)2](CF3SO3)2, with the 3‐[3‐(2‐pyridyl)pyrazol‐1‐ylmethyl]pyridine (L) ligand was obtained through the reaction of L with AgCF3SO3. In this complex, each AgI center in the centrosymmetric dinuclear complex cation is coordinated by two pyridine and one pyrazole N‐atom donor of two inversion‐related L ligands in a trigonal planar geometry. This forms a unique box‐like cyclic dimer with an intramolecular nonbonding Ag...Ag separation of 6.379 (7) Å. Weak Ag...CF3SO3 and C—H...X (X = O and F) hydrogen‐bonding interactions, together with π–π stacking interactions, link the complex cations along the [001] and [10] directions, respectively, generating two different one‐dimensional chains and then an overall two‐dimensional network of the complex running parallel to the (110) plane. Comparison of the structural differences with previous findings suggests that the presence of different counter‐anions plays an important role in the construction of such supramolecular frameworks.  相似文献   

9.
The title compound, {(C7H15N2Cl)2[Cd3Cl10]·4H2O}n, consists of 1‐chloromethyl‐1,4‐diazoniabicyclo[2.2.2]octane dications, one‐dimensional inorganic chains of {[Cd3Cl10]4−} anions and uncoordinated water molecules. Each of the two independent CdII ions, one with site symmetry 2/m and the other with site symmetry m, is octahedrally coordinated by chloride ions (two with site symmetry m and one with site symmetry 2), giving rise to novel polymeric zigzag chains of corner‐sharing Cd‐centred octahedra parallel to the c axis. The organic cations, bisected by mirror planes that contain the two N atoms, three methylene C atoms and the Cl atom, are ordered. Hydrogen bonds (O—H...Cl and O—H...O) between the water molecules (both with O atoms in a mirror plane) and the chloride anions of neighbouring chloridocadmate chains form a three‐dimensional supramolecular network.  相似文献   

10.
The title compound, {[Ag2(C10H14N4)2](ClO4)2}n, is a one‐dimensional coordination polymer formed by AgI atoms linearly bridged by 1,1′‐(butane‐1,4‐diyl)diimidazole molecules. The chains have a helical arrangement and pairs of chains are held together by the rarely reported ligand‐unsupported Ag—Ag interaction [2.966 (1) Å], which results in a double‐helix structure. The double helix contains twisted 24‐membered metallomacrocycles, which are composed of four Ag atoms and two ligands. The Ag atoms lie on twofold axes.  相似文献   

11.
The title complex, [Rh(C10H15)Cl(C14H12N2O4)]Cl·2C4H5NO3, has been synthesized by a substitution reaction of the precursor [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]chlorido(pentamethylcyclopentadienyl)rhodium(III) chloride with NaOCH3. The RhIII cation is located in an RhC5N2Cl eight‐coordinated environment. In the crystal, 1‐hydroxypyrrolidine‐2,5‐dione (NHS) solvent molecules form strong hydrogen bonds with the Cl counter‐anions in the lattice and weak hydrogen bonds with the pentamethylcyclopentadienyl (Cp*) ligands. Hydrogen bonding between the Cp* ligands, the NHS solvent molecules and the Cl counter‐anions form links in a V‐shaped chain of RhIII complex cations along the c axis. Weak hydrogen bonds between the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate ligands and the Cl counter‐anions connect the components into a supramolecular three‐dimensional network. The synthetic route to the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate‐containing rhodium complex from the [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]rhodium(III) precursor may be applied to link Rh catalysts to the surface of electrodes.  相似文献   

12.
The title compound, [Pd2(C4H13N3)2(C14H16N2)](NO3)4, comprises discrete tetracationic dumbbell‐type dinuclear complex molecules and noncoordinating nitrate anions. Two Pd(dien)2+ moieties (dien is diethylenetriamine) are joined by the rigid linear exo‐bidentate bridging 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine ligand to form the dinuclear complex, which lies across a centre of inversion in the space group P21/n, so that the rings in the 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine bridging ligand are parallel. In the crystal, the primary and secondary amino groups of the dien ligand act as hydrogen‐bond donors towards the nitrate anions to form a three‐dimensional hydrogen‐bond network.  相似文献   

13.
In the title complex, {[Ag(C12H10N2)]NO3}n, the Ag atom, which is in a linear AgN2 geometry, is surrounded by two trans‐related N atoms of two bpe ligands [Ag—N = 2.173 (3) and 2.176 (3) Å; bpe is trans‐1,2‐bis(2‐pyridyl)­ethyl­ene]. The bpe ligands bridge neighbouring Ag atoms to form zigzag polymeric chains in the lattice. These adjacent one‐dimensional zigzag chains are extended into a three‐dimensional supramolecular array by strong interchain π?π interactions between the pyridyl rings of adjacent chains.  相似文献   

14.
The structure of the title complex, [Cu(NO3)2(C27H26O2P2)]n, consists of polymeric chains formed by propane‐1,3‐diylbis(diphenylphosphine oxide) ligands bridging between metal centres. The Cu atom lies on a twofold rotation axis and a further symmetry centre bisects the bridging bisphosphine dioxide ligand. The CuO6 coordination geometry is a distorted octahedron, with the bidentate chelating nitrate groups adopting a cis configuration.  相似文献   

15.
The title complex, [Ag2(C7H5O2)2(C18H18F2N2)]n, is a dinuclear silver(I) compound with one inversion centre between pairs of Ag atoms and another at the mid‐point of the central C—C bond in the butane‐1,4‐diamine moiety. Each of the smallest repeat units consists of two silver(I) cations, two benzoate anions and one N,N′‐bis(2‐fluorobenzyl­idene)­butane‐1,4‐di­amine Schiff base ligand. Each AgI ion is three‐coordinated in a trigonal configuration by two O atoms from two benzoate anions and one N atom from a Schiff base ligand. The di‐μ‐benzoato‐disilver(I) moieties are linked by the bridging Schiff base ligand, giving zigzag polymeric chains with an [–Ag⋯Ag—N—C—C—C—C—N–]n backbone running along the b axis.  相似文献   

16.
In the title polymeric complex, [Mn(C7H5O3)2(C12H8N2)]n, the MnII atom is located on a twofold axis and displays a distorted octa­hedral coordination geometry, formed by four salicylate anions and one 1,10‐phenanthroline (phen) mol­ecule. The salicylate anions doubly bridge the MnII atoms to form one‐dimensional polymeric chains. A comparison of Mn—O bond distances with the corresponding Mn—O—C angles suggests a significant electrostatic content in the Mn—O bonds. A face‐to‐face distance of 3.352 (7) Å between neighbouring parallel phen planes indicates π–π stacking inter­actions between polymeric chains.  相似文献   

17.
In the title polymeric heterometallic compound, {[Cu3Gd(C6H4NO2)3Cl3(H2O)2]·0.5H2O}n, comprising copper(I) and gadolinium(III) cations bridged by nicotinate (nic) ligands and chloride anions, the GdIII centers display a bicapped trigonal prismatic geometry, defined by six carboxylate O atoms and two water molecules. For copper(I), one Cu center is three‐coordinated by three chloride ions and displays a trigonal–planar geometry; the other two Cu centers are four‐coordinated and display a very distorted tetrahedral geometry. The chloride anions act in μ2‐ and μ3‐bridging modes, linking the CuI ions into an infinite chain. The nic ligand exhibits a tridentate coordination mode, with the carboxylate O atoms linking to two GdIII ions and the N atom linking to one CuI ion. Thus, a novel three‐dimensional heterometallic coordination polymer is constructed from Gd–carboxylate subunits and Cu—Cl chains. In addition, intra‐ and intermolecular O—H...O and O—H...Cl hydrogen bonds are also observed within the three‐dimensional structure. Topologically, the framework represents an unusual 3,6‐connected (4.82)3(410.65) net.  相似文献   

18.
Three aluminium complexes supported by a tetradentate pyrrolide ligand H2L [H2L = N,N′‐(2,2‐dimethylpropane‐1,3‐diyl)bis(1‐(1H‐pyrrol‐2‐yl)methanimine)], namely, Al(L)Me ( 1 ), Al(L)Cl ( 2 ), and Al(L)(OiPr) ( 3 ), were synthesized. The structures of 1 and 2 were established by X‐ray single crystal diffraction analysis, and the structure of 3 was characterized by NMR spectroscopy and element analysis. All complexes, containing different chemical bond forms (Al–C, Al–Cl, and Al–O), are good initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone. The obtained polymers have high molecular weights (MWs) and relatively narrow molecular weight distributions (PDIs). Complexes 1 and 3 show dramatically high activities for the ROP of ε‐caprolactone. For complex 1 , when the monomer/initiator (M/I) ratio is 6400:1, a 40 % yield of the product could be obtained at 100 °C. The activity of 3 is higher than that of 1 , and 39 % yield of the polymers could be afforded at 70 °C, as the M/I value reaches 12800:1. The good activities of these complexes reveal their potential applications in industry.  相似文献   

19.
The title compound, {[Ag(C6H16N2)](C9H7O2)·2H2O}n, has been synthesized and characterized by elemental analysis and single‐crystal X‐ray diffraction. The Ag atom is coordinated in a linear configuration by two N atoms from two hexane‐1,6‐­diamine ligands, giving a zigzag polymeric chain with an [–Ag—N—C—C—C—C—C—C—N–]n backbone running parallel to the c axis. In the crystal packing, adjacent chains interact with the anions via the lattice water mol­ecules, thus forming layers parallel to the bc plane.  相似文献   

20.
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non‐isomorphous with the Br‐containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4‐oxathiane mol­ecule does not realize its coordination abilities in the known copper(I)–halide complexes, while in copper(II)–halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred inter­actions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom) with harder base (O atom).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号