首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Several magnetic materials consisting of dipoles owe their properties to the specific nature of the dipole–dipole interaction. In the present work, systems of particles possessing a dipole moment arranged on various types of 2D and 3D structures, completely arbitrary and, in some 2D instances, periodic (albeit finite), are studied. Noteworthy, the work is in the regime of strong dipole moments where a classical treatment is possible. The ultimate goal is to quantitatively address the unknown relation existing between the minimum possible energy of a system of dipoles and the concomitant total dipole moment. To such an end, classical numerical methods are used to the previous minimum energy–total dipole moment tandem for various magnetic configurations at zero temperature. An analytic bound for the minimal energy valid for any dimension is also obtained. With this exploration, new light is shed on the connection between the two former physical quantities, establishing an analytic inequality for N=3 particles, and describing other instances of physical interest.  相似文献   

7.
In recent years, intrinsic 2D magnetism has aroused great interest because of its potential application in spintronic devices. However, low Curie temperature (Tc) and magnetic anisotropy energy (MAE) limit its application prospects. Here, using first-principles calculations based on density-functional theory, a series of stable MnXSe4 (X=As, Sb) single-layer is predicted. The MAE of single-layer MnAsSe4 and MnSbSe4 is 648.76 and 808.95 μeV per Mn atom, respectively. Monte Carlo simulations suggest the Tc of single-layer MnAsSe4 and MnSbSe4 is 174 and 250 K, respectively. The energy band calculation with hybrid Heyd–Scuseria–Ernzerhof (HSE06) function indicates the MnXSe4 (X = As, Sb) is ferromagnetic half-metallic. Also, it has 100% spin-polarization ratio at the Fermi level. For MnAsSe4 and MnSbSe4, the spin-gaps are 1.59 and 1.48 eV, respectively. These excellent magnetic properties render MnXSe4 (X = As, Sb) as promising candidate materials for 2D spintronic applications.  相似文献   

8.
9.
10.
The uncanny resemblance of the global distribution of all experimentally known atomic spectral lines to the Planckian spectral distribution associated with black body radiation at a temperature of T9000K is reported. This value coincides with the critical temperature of equilibrium between the respective densities of radiation and matter in the early universe.  相似文献   

11.
12.
13.
14.
15.
Dielectric materials with high indices have recently attracted much attention in the community of nanophotonics. Severe optical losses in visible–ultraviolet (UV) region, however, limit their applications. This article proposes dielectric–metal nanocomposites as alternative high-index materials for Mie-resonance-based applications. Such composite materials have high indices in the range of wavelength longer than plasmon resonance of inclusion metal nanoparticles, while they have much lower losses in the range from blue-violet down to near-UV compared with commonly used high-index materials such as silicon, enabling near-UV generation with high efficiency based on third-harmonic generation (THG). The numerical results show that ZnO nanodisk containing silver nanoparticles can generate near-UV radiation at 351.3 nm via THG with an efficiency about 20 times higher compared with silicon nanodisk under same pumping condition. Significantly high THG efficiency of 0.015% has been predicted with such a composite nanodisk supported by aluminum substrate under pumping with a peak intensity of 20 GW cm−2, a spot size of 0.8 μm, a duration of 50 fs at 1054 nm, respectively.  相似文献   

16.
We present example quantum chemistry programs written with JaqalPaq, a python meta-programming language used to code in Jaqal (Just Another Quantum Assembly Language). These JaqalPaq algorithms are intended to be run on the Quantum Scientific Computing Open User Testbed (QSCOUT) platform at Sandia National Laboratories. Our exemplars use the variational quantum eigensolver (VQE) quantum algorithm to compute the ground state energies of the H2, HeH+, and LiH molecules. Since the exemplars focus on how to program in JaqalPaq, the calculations of the second-quantized Hamiltonians are performed with the PySCF python package, and the mappings of the fermions to qubits are obtained from the OpenFermion python package. Using the emulator functionality of JaqalPaq, we emulate how these exemplars would be executed on an error-free QSCOUT platform and compare the emulated computation of the bond-dissociation curves for these molecules with their exact forms within the relevant basis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号