首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

2.
The title compound, C14H16N4O4, adopts the anti conformation at the gly­cosylic bond [χ−117.1 (5)°]. The sugar pucker of the 2′‐deoxy­ribo­furan­osyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type). The orientation of the exocyclic C4′—C5′ bond is +sc (gauche). The propynyl group is linear and coplanar with the nucleobase moiety. The structure of the compound is stabilized by several hydrogen bonds (N—H⋯O and O—H⋯O), leading to the formation of a multi‐layered network. The nucleobases, as well as the propynyl groups, are stacked. This stacking might cause the extraordinary stability of DNA duplexes containing this compound.  相似文献   

3.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

4.
The title compound, [Sn(CH3)2(C16H15NO3)], crystallized from one reaction batch with high enantiomeric excess as both a pure enantiomer and a racemate. The S enantiomer crystallizes in the chiral space group P32. The racemate crystallizes in the space group P with R and S enantiomers in the crystal lattice; these form dimers about a crystallographic inversion centre.  相似文献   

5.
The title compound, C10H12FN5O4·H2O, shows an anti glycosyl orientation [χ = −123.1 (2)°]. The 2‐deoxy‐2‐fluoroarabinofuranosyl moiety exhibits a major C2′‐endo sugar puckering (S‐type, C2′‐endo–C1′‐exo, 2T1), with P = 156.9 (2)° and τm = 36.8 (1)°, while in solution a predominantly N conformation of the sugar moiety is observed. The conformation around the exocyclic C4′—C5′ bond is −sc (trans, gauche), with γ = −78.3 (2)°. Both nucleoside and solvent molecules participate in the formation of a three‐dimensional hydrogen‐bonding pattern via intermolecular N—H...O and O—H...O hydrogen bonds; the N atoms of the heterocyclic moiety and the F substituent do not take part in hydrogen bonding.  相似文献   

6.
In the title compound, 2‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐5‐methyl­pyrimidin‐4(1H)‐one, C10H15N3O4, the conformation of the N‐glycosidic bond is syn and the 2‐deoxy­ribo­furan­ose moiety adopts an unusual OT1 sugar pucker. The orientation of the exocyclic C4′—C5′ bond is +sc (+gauche).  相似文献   

7.
In the title compound, C14H19IN2O8, an almost planar heterocyclic base is oriented anti with respect to the puckered sugar moiety. The sugar pucker is C2′‐endo/C3′‐exo, the N‐glycosidic torsion angle is 166.4 (4)° and the conformation of O5′ is +sc. The mol­ecules are linked by hydrogen bonds of the types N—H?O and O—H?O.  相似文献   

8.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

9.
In the title compound [systematic name: 4‐amino‐7‐(β‐d ‐ribofuranos­yl)‐7H‐pyrazolo[3,4‐d][1,2,3]triazine], C9H12N6O4, the torsion angle of the N‐glycosylic bond is high anti [χ = −83.2 (3)°]. The ribofuran­ose moiety adopts the C2′‐endo–C1′‐exo (2T1) sugar conformation (S‐type sugar pucker), with P = 152.4° and τm = 35.0°. The conformation at the C4′—C5′ bond is +sc (gauche,gauche), with the torsion angle γ = 52.0 (3)°. The compound forms a three‐dimensional network that is stabilized by several hydrogen bonds (N—H⋯O, O—H⋯N and O—H⋯O).  相似文献   

10.
The title compound, C9H12N6O3, shows a syn‐glycosylic bond orientation [χ = 64.17 (16)°]. The 2′‐deoxyfuranosyl moiety exhibits an unusual C1′‐exo–O4′‐endo (1T0; S‐type) sugar pucker, with P = 111.5 (1)° and τm = 40.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche), with γ = 64.4 (1)°. The two‐dimensional hydrogen‐bonded network is built from intermolecular N—H...O and O—H...N hydrogen bonds. An intramolecular bifurcated hydrogen bond, with an amino N—H group as hydrogen‐bond donor and the ring and hydroxymethyl O atoms of the sugar moiety as acceptors, constrains the overall conformation of the nucleoside.  相似文献   

11.
In the title compound, C12H13N3O5, the conformation of the gly­cosyl­ic bond is anti [torsion angle = −105.3 (2)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts an S‐type sugar pucker and the orientation of the exocyclic C—C bond is −sc (trans).  相似文献   

12.
Esterification of a single diastereomer of 2‐(4‐methylene­cyclohex‐2‐enyl)propanol, (II), with (1R,4S)‐(+)‐camphanic acid [(1R,4S)‐4,7,7‐trimethyl‐3‐oxo‐2‐oxabicyclo[2.2.1]heptane‐1‐carboxylic acid] leads to the crystalline title compound, C20H28O4. The relative configuration of the camphanate was determined by X‐ray diffraction analysis. The outcome clarifies the relative and absolute stereochemistry of the naturally occurring bisabolane sesquiterpenes β‐turmerone and β‐sesquiphellandrene, since we have converted (II) into both natural products via a stereospecific route.  相似文献   

13.
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)‐ and (2R,4S)‐ or of (2R,4R)‐ and (2S,4R)‐2‐tert‐butyl‐4‐methyl‐3‐(4‐tolyl­sulfon­yl)‐1,3‐oxazolidine‐4‐carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)‐ or (R)‐2‐tert‐butyl‐5‐methyl‐4H‐1,3‐dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.  相似文献   

14.
The title compound [systematic name: 1‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐4‐nitro‐1H‐pyrrolo[2,3‐b]pyridine], C12H13N3O5, forms an intramolecular hydrogen bond between the pyridine N atom as acceptor and the 5′‐hydroxy group of the sugar residue as donor. Consequently, the N‐glycosylic bond exhibits a syn conformation, with a χ torsion angle of 61.6 (2)°, and the pentofuranosyl residue adopts a C2′‐endo envelope conformation (2E, S‐type), with P = 162.1 (1)° and τm = 36.2 (1)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a torsion angle γ = 49.1 (2)°. The title nucleoside forms an ordered and stacked three‐dimensional network. The pyrrole ring of one layer faces the pyridine ring of an adjacent layer. Additionally, intermolecular O—H...O and C—H...O hydrogen bonds stabilize the crystal structure.  相似文献   

15.
The crystal and molecular structure of 1‐tert‐butyl 4‐ethyl (2′R,3′R,5′R,2S,3S)‐3‐bromo­methyl‐3‐hydroxy‐2‐[(2′‐hydroxy‐2′,6′,6′‐tri­methyl­bi­cyclo­[3.1.1]­hept‐3′‐yl­idene)­amino]­succinate, C21H34BrNO6, is presented. This compound is an intermediate in the new synthetic route to β‐substituted β‐hydroxy­aspartates, which are blockers of glutamate transport.  相似文献   

16.
The title compound, C15H16NS+·C2H3O2, has been crystallized as both a pure enantiomer (1S,5R) and a racemate. The racemate crystallizes in the space group Cc, with molecules of opposite handedness related to each other by the action of the c‐glide. The enantiomer is essentially isostructural with the racemate, except that the glide symmetry is violated by interchange of CH and CH2 groups within the seven‐membered ring. The space‐group symmetry is reduced to P1 with two molecules in the asymmetric unit. The enantiomer structure shows disorder of the thiophene ring for one of the molecules in the asymmetric unit. The major component of the disorder has the thiophene ring in the same position as in the racemate, but generates a higher‐energy molecular conformation. The minor disorder component has different intermolecular interactions but retains a more stable molecular conformation.  相似文献   

17.
The (3R,5′R,6′R)‐ and (3R,5′R,6′S)‐capsanthol‐3′‐one (=3,6′‐dihydroxy‐β,κ‐caroten‐3′‐one; 4 and 5 , resp.) were reduced by different complex metal hydrides containing organic ligands. The ratio of the thus obtained diastereoisomeric (3′S)‐capsanthols 2 and 3 or (3′R)‐capsanthols 6 and 7 , respectively, was investigated. Four complex hydrides showed remarkable stereoselectivity and produced the (3′R,6′S)‐capsanthol ( 6 ) in 80 – 100% (see Table 1). The starting materials and the products were characterized by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

18.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

19.
In the title compound, 4‐amino‐1‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐6‐methyl­sulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C11H16N5O3S, the conformation of the glycosidic bond is between anti and high anti. The 2′‐deoxy­ribofuranosyl moiety adopts the C3′‐exo–C4′‐endo conformation (3T4, S‐type sugar pucker), and the conformation at the exocyclic C—C bond is +sc (+gauche). The exocyclic 6‐amine group and the 2‐methyl­sulfanyl group lie on different sides of the heterocyclic ring system. The mol­ecules form a three‐dimensional hydrogen‐bonded network that is stabilized by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

20.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号