共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ). 相似文献
2.
Anthony Linden A. S. Muhammad Sofian C. Kuan Lee 《Acta Crystallographica. Section C, Structural Chemistry》2002,58(12):o718-o720
At 160 K, one of the Cl atoms in the furanoid moiety of 3‐O‐acetyl‐1,6‐dichloro‐1,4,6‐trideoxy‐β‐d ‐fructofuranosyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galactopyranoside, C20H27Cl3O11, is disordered over two orientations, which differ by a rotation of about 107° about the parent C—C bond. The conformation of the core of the molecule is very similar to that of 3‐O‐acetyl‐1,4,6‐trichloro‐1,4,6‐trideoxy‐β‐d ‐tagatofuranosyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galactopyranoside, particularly with regard to the conformation about the glycosidic linkage. 相似文献
3.
Hans R. Kricheldorf Kirstin Bornhorst 《Journal of polymer science. Part A, Polymer chemistry》2008,46(11):3732-3739
5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐dichlorodiphenyl sulfone (DCDPS) or with 4,4′‐bis(4‐chlorophenyl sulfonyl) biphenyl (BCSBP) in DMSO. Concentration and feed ratio were optimized to avoid gelation and to obtain a maximum yield of multicyclic polyethers free of functional groups. Regardless of these reaction conditions, only low fractions of perfect multicycles were obtained from DCDPS apparently due to steric hindrance of ring closure. Under the same conditions high fractions of perfect multicycles were achieved with the longer and more flexible DCSBP. The reaction products were characterized by MALDI‐TOF mass spectrometry, 1H‐NMR spectroscopy viscosity, and DSC measurements. Relatively low glass transition temperatures (Tgs ≈ 160–175 °C) were found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3732–3739, 2008 相似文献
4.
Aleksandar Vinjevac Biserka Koji‐Prodi Marijana Vinkovi Kata Mlinari‐Majerski 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(6):o314-o316
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized. 相似文献
5.
Zhong Yu Atsuhiro Nabei Takafumi Izumi Takashi Okubo Takayoshi Kuroda‐Sowa 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(5):m209-m212
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4− anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing. 相似文献
6.
Hans‐Ruedi Mürner Rosario Scopelliti Jean‐Claude G. Bünzli 《Acta Crystallographica. Section C, Structural Chemistry》2002,58(8):m434-m435
In the title compound, [TbCl(C27H35N3)2(H2O)](ClO4)2·2C2H6O, the TbIII ion has a coordination number of eight, composed of two tridentate substituted‐terpyridine ligands, a water molecule and a bound Cl? anion. The first coordination shell can be described as a distorted bicapped trigonal prism. The dihedral angles between pyridine rings belonging to the same tpy ligand range from 5.2 (5) to 16.8 (5)°. 相似文献
7.
Hans R. Kricheldorf Kirstin Bornhorst 《Journal of polymer science. Part A, Polymer chemistry》2007,45(23):5597-5605
5.5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐difluorodiphenylsulfone (DFDPS) in DMSO with K2CO3 as catalyst and azeotopic removal of water. The feed ratio of DFDPS/TTSBI was varied from 1.0/1.0 to 2.0/1.0 at concentrations avoiding gelation. At feed ratios around 1.0/1.0 hyperbranched polymers were a minority and cyclic poly(ether sulfone)s were the predominant reaction products. With increasing feed ratio of DFDPS more and more multicyclic polymers were formed, and at a feed ratio of 1.9/1.0 perfect multicycles free of functional groups were the vast majority of the reaction product. Despite variation of the reaction conditions quantitative conversion was not achieved. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5597–5605, 2007 相似文献
8.
Jaromír Marek Pavel Kopel Zdenk Trvní
ek 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(12):m558-m560
In the crystal structure of the title compound, [N,N′‐bis(3‐aminopropyl)ethylenediamine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trithionato(2−)‐κ2N,S]zinc(II) ethanol solvate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octahedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐aminopropyl)ethylenediamine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a trithiocyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds. 相似文献
9.
Anthony Linden A. S. Muhammad Sofian C. Kuan Lee 《Acta Crystallographica. Section C, Structural Chemistry》2002,58(12):o711-o714
At 160 K, the glucopyranosyl ring in 1,6‐dichloro‐1,6‐dideoxy‐β‐d ‐fructofuranosyl 4‐chloro‐4‐deoxy‐α‐d ‐glucopyranoside monohydrate, C12H19Cl3O8·H2O, has a near ideal 4C1 chair conformation, while the fructofuranosyl ring has a 4T3 conformation. The conformation of the sugar molecule is quite different to that of sucralose, particularly in the conformation about the glycosidic linkage, which affects the observed pattern of intramolecular hydrogen bonds. A complex series of intermolecular hydrogen bonds links the sugar and water molecules into an infinite three‐dimensional framework. 相似文献
10.
Hans R. Kricheldorf Kerstin Bornhorst 《Journal of polymer science. Part A, Polymer chemistry》2007,45(9):1699-1706
Triethylamine‐promoted polycondensations of 5,5′,6,6′‐tetrahydroxy‐3,3, 3′,3′‐tetramethyl spirobisindane (TTSBI) and α,ω‐alkane dicarboxylic acid dichlorides were performed with equimolar feed ratios. Three different procedures were compared. At a TTSBI concentration of 0.05 mol/L, gelation was avoided, and soluble cyclic polyesters having two OH groups per repeat unit were isolated. These polyesters were characterized with 1H NMR spectroscopy, MALDI‐TOF mass spectrometry, and SEC and DSC measurements. All polycondensations with sebacoyl chloride resulted in gelation, regardless of the procedure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1699–1706, 2007 相似文献
11.
Eduardo Diaz Hctor Barrios Francisco Yuste Jos Luis Aguilera William F. Reynolds Marie Rose Van Calsteren Christopher Jankowski 《Journal of heterocyclic chemistry》1993,30(1):97-104
The reaction of dibenzalcyclohexanone with hydroxylamine hydrochloride afforded three compounds 1–3 including the aziridine 3 showing a 3′,3a′-trans configuration. Now we report on the isolation of a new aziridine 4 , possessing a 3′,3a′-cis configuration. Its structure was deduced by 2D nmr and single crystal X-ray diffraction studies. 相似文献
12.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data. 相似文献
13.
Naiying Du Jingshe Song Gilles P. Robertson Ingo Pinnau Michael D. Guiver 《Macromolecular rapid communications》2008,29(10):783-788
A high molecular weight ladder polymer based on 5,5′,6,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane and 1,4‐dicyanotetraflurobenzene has been synthesized by polycondensation under high‐intensity mixing conditions at about 155 °C and cyclic‐free products were obtained in high yield with low molecular weight distribution (1.7–2.3). The reaction could be completed within a few minutes. The polymer properties were characterized by GPC, 1H NMR, 13C NMR, F NMR, FT‐IR, and MALDI‐TOF MS. In addition, the mechanical properties, apparent surface areas and gas permeability are also reported. This procedure can also be used for the synthesis of other ladder polymers by irreversible polycondensations of tetraphenols with activated tetrafluoro aromatics.
14.
Matthew Akerman Kate Akerman Deogratius Jaganyi Desigan Reddy 《Acta Crystallographica. Section C, Structural Chemistry》2011,67(9):m290-m292
The reaction between [PtCl(terpy)]·2H2O (terpy is 2,2′:6′,2′′‐terpyridine) and pyrazole in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C3H4N2)(C15H11N3)](ClO4)2·CH3NO2, as a yellow crystalline solid. Single‐crystal X‐ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest‐energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid‐state structure is sufficient for the chelate to adopt a higher‐energy conformation. 相似文献
15.
4,6,3′,4′‐Tetrasubstituted aurones were prepared by a protection‐deprotection route with an alumina‐catalyzed condensation of 3( 2 )H‐benzofuranones with substituted aldehydes as the key step. Aureusidin ( 6 ) was obtained by demethylation of 4,6,3′,4′‐tetramethoxyaurone ( 5 ), a natural product from Cyperus capita‐tus. 4,6,3′,4′‐Tetrabenzyloxyaurone ( 9 ) was converted in a one hydrogenation‐deprotection step to dihy‐droaureusidin ( 10 ). 相似文献
16.
The synthesis of sterically hindered 1,1′, 3,3′-tetraethylbenzimidazolotriazatrimethine cyanine dyes, their electron absorption spectra and that of their photo-products (inverse photochromism) is described. Kinetic data of the thermally reversed reaction of the photo-bleached compounds are given. The differences of the electron absorption spectra in this series in this series of dyes are explained by the different degree of distortion of the π-systems which is confirmed by an X-ray investigation. 相似文献
17.
Ludwig Chenneberg Janaina G. Ferreira Garry S. Hanan 《Acta Crystallographica. Section C, Structural Chemistry》2011,67(4):m81-m84
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network. 相似文献
18.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs. 相似文献
19.
Oleg Stenzel Matthias W. Esterhuysen Helgard G. Raubenheimer 《Acta Crystallographica. Section C, Structural Chemistry》2001,57(9):1056-1059
The crystal and molecular structures of bis(η5‐2,4,7‐trimethylindenyl)cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å. 相似文献
20.
Igor V. Kazakov Michael Bodensteiner Alexey Y. Timoshkin 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):312-314
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well. 相似文献