首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the crystal structure of the title compond, alternatively called poly[calcium(II)‐di‐μ‐carboxymethylphosphonato], [Ca(C2H4O5P)2]n or [Ca(H2AP)2]n, one of the phosphonate O atoms of the phosphonocarboxylate monoanion lies nearly antiperiplanar (ap) to the carboxylic acid C atom. The phosphonate P atom is located −sc and +ac relative to the carboxylic acid O atoms. The overall structure has a layered architecture. The Ca2+ cations lie on a twofold axis and are bridged by the phosphonate O atoms to form chains along the c axis, giving layers parallel to (100). There are medium‐strength O—H⃛O and C—H⃛O hydrogen‐bonding interactions stabilizing the layers, and O—H⃛O hydrogen bonds connect adjacent layers.  相似文献   

3.
In O‐ethyl N‐benzoylthiocarbamate, C10H11NO2S, the molecules are linked into sheets by a combination of two‐centre N—H...O and C—H...S hydrogen bonds and a three‐centre C—H...(O,S) hydrogen bond. A combination of two‐centre N—H...O and C—H...O hydrogen bonds links the molecules of O‐ethyl N‐(4‐methylbenzoyl)thiocarbamate, C11H13NO2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In O,S‐diethyl N‐(4‐methylbenzoyl)imidothiocarbonate, C13H17NO2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry‐related C—H...π(arene) hydrogen bonds, while the molecules of O,S‐diethyl N‐(4‐chlorobenzoyl)imidothiocarbonate, C12H14ClNO2S, are linked by a single C—H...O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder‐type structure.  相似文献   

4.
Crystal structures are reported for four related diethyl [(arylamino)(4‐ethynylphenyl)lmethyl]phosphonate derivatives, namely diethyl [(4‐bromoanilino)(4‐ethynylphenyl)methyl]phosphonate, C19H21BrNO3P, (I), diethyl ((4‐chloro‐2‐methylanilino){4‐[2‐(trimethylsilyl)ethynyl]phenyl}methyl)phosphonate, C23H31ClNO3PSi, (II), diethyl ((4‐fluoroanilino){4‐[2‐(trimethylsilyl)ethynyl]phenyl}methyl)phosphonate, C22H29FNO3PSi, (III), and diethyl [(4‐ethynylphenyl)(naphthalen‐2‐ylamino)methyl]phosphonate, C23H24NO3P, (IV). The conformation of the anilinobenzyl group is very similar in all four compounds. The P—C bond has an approximately staggered conformation, with the aniline and ethynylphenyl groups in gauche positions with respect to the P=O double bond. The two six‐membered rings are almost perpendicular. The sums of the valence angles about the N atoms vary from 344 (2) to 351 (2)°. In the crystal structures, molecules of (I), (III) and (IV) are arranged as centrosymmetric or pseudocentrosymmetric dimers connected by two N—H...O=P hydrogen bonds. The molecules of (II) are arranged as centrosymmetric dimers connected by Cmethyl—H...O=P hydrogen bonds. The N—H bond of (II) is not involved in hydrogen bonding.  相似文献   

5.
The structures of di­phenyl [3‐methyl‐1‐(3‐phenyl­thio­ureido)­butyl]­phosphonate and di­phenyl [2‐methyl‐1‐(3‐phenyl­thio­ureido)­butyl]­phosphonate, both C24H27N2O3PS, are reported. In both compounds, the thio­urea moiety adopts a synsyn conformation (i.e. the S—C—N—C torsion angles are synperi­planar), which enables N—H⋯O hydrogen bonds to be formed between centrosymmetrically related mol­ecules. The geometries around the P atoms can be described as distorted tetrahedral. Some of the functional groups in each structure are disordered. The bulk of the different alkyl substituents between the amide and phosphonate groups influences the molecular conformation and crystal packing. Although the structures of these compounds and two related derivatives appear to be similar, they are not isostructural.  相似文献   

6.
In the crystal structures of the conformational isomers hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate monohydrate (pro‐E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate (pro‐Z), C6H10N2O6P2, (Ib), the related hydrogen {[(2‐chloropyridin‐1‐ium‐3‐yl)amino](phosphono)methyl}phosphonate (pro‐E), C6H9ClN2O6P2, (II), and the salt bis(6‐chloropyridin‐3‐aminium) [hydrogen bis({[2‐chloropyridin‐1‐ium‐3‐yl(0.5+)]amino}methylenediphosphonate)] (pro‐Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O interactions, by water‐ or cation‐mediated contacts, and by π–π interactions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the interlayer contacts are realised through N—H...O hydrogen bonds and weak C—H...O interactions involving aromatic C atoms.  相似文献   

7.
The mol­ecular structures of the complexes imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate, C3H5N2+·C22H28O4PS, (I), and imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate diisopropyl hydrazo­dicarboxyl­ate hemisolvate, C3H5N2+·C22H28O4PS·0.5C8H16N2O4, (II), have been determined. While (I) forms the expected hydrogen‐bonded chain utilizing the two imidazole N‐bound H atoms, in (II), the substituted hydrazine solvent mol­ecule inserts itself between the chains. Compound (I) exhibits a strong N—H⋯O hydrogen bond, with an N⋯O distance of 2.603 (2) Å. The hydrazine solvent molecule in (II) lies about a twofold axis and the N‐bound H atoms are involved in bifurcated hydrogen bonds with phosphate O atoms. A C‐bound H atom of the imidazolium cation is involved in a C—H⋯O inter­action with a carbonyl O atom of the hydrazine solvent mol­ecule.  相似文献   

8.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

9.
The title ylides, 3‐(triphenyl­phospho­ranyl­idene)pentane‐2,4‐dione, C23H21O2P, (I), and diethyl 2‐(triphenyl­phospho­ranyl­idene)malonate, C25H25O4P, (II), differ in the conformations adopted by their extended ylide moieties. In (I), one carbonyl O atom is syn and the other is anti with respect to the P atom, the ylide group is nearly planar, with a maximum P—C—(C=O) angle of 18.2 (2)°, and the P—C, C—C and C=O bond lengths are consistent with electronic delocalization involving the O atoms. In (II), both carbonyl O atoms are anti and the ester groups are twisted out of the plane of the near trigonal ylide C atom, reducing delocalization, the largest P—C—(C=O) angle being 30.2 (2)°.  相似文献   

10.
In the crystal structure of (R)‐N,N‐diisopropyl‐3‐(2‐hydroxy‐5‐methyl­phenyl)‐3‐phenyl­propyl­aminium (2R,3R)‐hydrogen tartrate, C22H32NO+·C4H5O6, the hydrogen tartrate anions are linked by O—H⋯O hydrogen bonds to form helical chains built from (9) rings. These chains are linked by the tolterodine molecules via N—H⋯O and O—H⋯O hydrogen bonds to form separate sheets parallel to the (101) plane.  相似文献   

11.
The title compound, trans‐[Pd(C6H5)(C8H7O2S)(C18H15P)2], crystallizes in two modifications differing only in the orientation of the 2‐methyl­thio­benzoato ligand. In both cases, this ligand binds to the metal centre via one O atom in a monodentate fashion. The only significant difference is a rotation about the C(Ph)—COO bond, with O—C—C—C torsion angles having values of 6.3 (7) and 157.3 (3)° in the two isomeric forms.  相似文献   

12.
The asymmetric unit of O,O′‐dimethyl [(2,3,4,5,6‐pentafluorophenyl)hydrazinyl]phosphonate, C8H8F5N2O3P, is composed of two symmetry‐independent molecules with significant differences in the orientations of the C6F5 and OMe groups. In the crystal structure, a one‐dimensional assembly is mediated from classical N—H…O hydrogen bonds, which includes R22(8), D(2) and some higher‐order graph‐set motifs. By also considering weak C—H…O=P and C—H…O—C intermolecular interactions, a two‐dimensional network extends along the ab plane. The strengths of the hydrogen bonds were evaluated using quantum chemical calculations with the GAUSSIAN09 software package at the B3LYP/6‐311G(d,p) level of theory. The LP(O) to σ*(NH) and σ*(CH) charge‐transfer interactions were examined according to second‐order perturbation theory in natural bond orbital (NBO) methodology. The hydrogen‐bonded clusters of molecules, including N—H…O and C—H…O interactions, were constructed as input files for the calculations and the strengths of the hydrogen bonds are as follows: N—H…O [R22(8)] > N—H…O [D(2)] > C—H…O. The decomposed fingerprint plots show that the contribution portions of the F…H/H…F contacts in both molecules are the largest.  相似文献   

13.
In order to determine the impact of different substituents and their positions on intermolecular interactions and ultimately on the crystal packing, unsubstituted N‐phenyl‐2‐phthalimidoethanesulfonamide, C16H14N2O4S, (I), and the N‐(4‐nitrophenyl)‐, C16H13N3O6S, (II), N‐(4‐methoxyphenyl)‐, C16H16N3O6S, (III), and N‐(2‐ethylphenyl)‐, as the monohydrate, C18H18N2O4S·H2O, (IV), derivatives have been characterized by single‐crystal X‐ray crystallography. Sulfonamides (I) and (II) have triclinic crystal systems, while (III) and (IV) are monoclinic. Although the molecules differ from each other only with respect to small substituents and their positions, they crystallized in different space groups as a result of differing intra‐ and intermolecular hydrogen‐bond interactions. The structures of (I), (II) and (III) are stabilized by intermolecular N—H…O and C—H…O hydrogen bonds, while that of (IV) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds. All four structures are of interest with respect to their biological activities and have been studied as part of a program to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

14.
In the absence of conventional hydrogen bonding, the molecules of 4,6‐di‐O‐acetyl‐2‐O‐tosyl‐myo‐inositol 1,3,5‐orthoformate, C18H20O10S, (I), and 4,6‐di‐O‐acetyl‐2‐O‐tosyl‐myo‐inositol 1,3,5‐orthobenzoate, C24H24O10S, (II), are associated via C—H...O interactions. Molecules of (II) are additionally linked via dipolar S=O...C=O contacts. It is interesting to note that the sulfonyl O atom involved in the dipolar S=O...C=O contacts does not take part in any other interaction, indicating the competitive nature of this contact relative to the weak hydrogen‐bonding interactions.  相似文献   

15.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

16.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

17.
The compounds N‐[2‐(4‐cyano‐5‐dicyanomethylene‐2,2‐dimethyl‐2,5‐dihydrofuran‐3‐yl)vinyl]‐N‐phenylacetamide, C20H16N4O2,(I), and 2‐{3‐cyano‐5,5‐dimethyl‐4‐[2‐(piperidin‐1‐yl)vinyl]‐2,5‐dihydrofuran‐2‐ylidene}malononitrile 0.376‐hydrate, C17H18N4O·0.376H2O, (II), are novel push–pull molecules. The significant bonding changes in the polyene chain compared with the parent molecule 2‐dicyanomethylene‐4,5,5‐trimethyl‐2,5‐dihyrofuran‐3‐carbonitrile are consistent with the relative electron‐donating properties of the acetanilido and piperidine groups. The packing of (I) utilizes one phenyl–cyano C—H...N and two phenyl–carbonyl C—H...O hydrogen bonds. Compound (II) crystallizes with a partial water molecule (0.376H2O), consistent with cell packing that is dominated by attractive C—H...N(cyano) interactions. These compounds are precursors to novel nonlinear optical chromophores, studied to assess the impact of donor strength and the extent of conjugation on bond‐length alternation, crystal packing and aggregation.  相似文献   

18.
In situ cryocrystallization has been employed to grow single crystals of 4‐methoxybenzaldehyde (anisaldehyde), C8H8O2, 2‐hydroxybenzaldehyde (salicylaldehyde), C7H6O2, and (2E)‐3‐phenylprop‐2‐enal (cinnamaldehyde), C9H8O, all of which are liquids at room temperature. Several weak C—H...O interactions of the types Caryl—H...O, Cformyl—H...O and Csp3—H...O are present in these related crystal structures.  相似文献   

19.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

20.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐eythro‐pento­furan­osyl)‐3‐vinyl‐1H‐pyrazolo­[3,4‐d]­pyrimidine monohydrate, C12H15N5O3·H2O, the conformation of the gly­cosyl bond is anti. The furan­ose moiety is in an S conformation with an unsymmetrical twist, and the conformation at the exocyclic C—C(OH) bond is +sc (gauche, gauche). The vinyl side chain is bent out of the heterocyclic ring plane by 147.5 (5)°. The three‐dimensional packing is stabilized by O—H·O, O—H·N and N—H·O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号