首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

2.
3.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

4.
The aim of this research was to study the effect of the initiator on the resulting monomer distribution for the cationic ring‐opening copolymerization of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐phenyl‐2‐oxazoline (PhOx). At first, kinetic studies were performed for the homopolymerizations of both monomers at 160 °C under microwave irradiation using four initiators. These initiators have the same benzyl‐initiating group but different leaving groups, Cl?, Br?, I?, and OTs?. The basicity of the leaving group affects the ratio of covalent and cationic propagating species and, thus, the polymerization rate. The observed differences in polymerization rates could be correlated to the concentration of cationic species in the polymerization mixture as determined by 1H NMR spectroscopy. In a next‐step, polymerization kinetics were determined for the copolymerizations of EtOx and PhOx with these four initiators. The reactivity ratios for these copolymerizations were calculated from the polymerization rates obtained for the copolymerizations. This approach allows more accurate determination of the copolymerization parameters compared to conventional methods using the composition of single polymers. When benzyl chloride (BCl) was used as an initiator, no copolymers could be obtained because its reactivity is too low for the polymerization of PhOx. With decreasing basicity of the used counterions (Br? > I? > OTs?), the reactivity ratios gradually changed from rEtOx = 10.1 and rPhOx = 0.30 to rEtOx = 7.9 and rPhOx = 0.18. However, the large difference in reactivity ratios will lead to the formation of quasi‐diblock copolymers in all cases. In conclusion, the used initiator does influence the monomer distribution in the copolymers, but for the investigated system the differences were so small that no difference in the resulting polymer properties is expected. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4804–4816, 2008  相似文献   

5.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

6.
A living anionic alternating copolymerization of ethylphenylketene (EPK) with 4‐methoxybenzaldehyde (MBA) was achieved. When n‐butyllithium was added to a mixture of EPK and MBA in tetrahydrofuran at ?40 °C in the presence of an excess amount of lithium chloride, the copolymerization of these monomers proceeded via complete 1:1 alternating manner to afford the polymer with a narrow molecular weight distribution. A linear relationship was observed between the molecular weight and the monomer/initiator ratio, keeping a narrow molecular weight distribution. The structure of the obtained polymer was determined to be a polyester by IR spectroscopy together with the reductive degradation of the polymer by lithium aluminum hydride, which quantitatively afforded the corresponding diol to the repeating unit of the expected polyester structure. Both conversions of EPK and MBA agreed to a first‐order kinetic equation with linear evolution between the molecular weight and conversion. These observations along with the successful results in two‐stage polymerization indicate that the present copolymerization proceeded through a living mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2078–2084, 2001  相似文献   

7.
This article describes the anionic copolymerization of glycidyl phenyl ether (GPE) and 1,2‐dihydro‐3H‐naphtho[2,1‐b]pyran‐3‐one (DHNP), a six‐membered aromatic lactone bearing naphthyl moiety. The copolymerization proceeded in a 1:1 alternating manner, to afford the corresponding polyester. The ester linkage in the main chain was cleavable by reduction with lithium aluminum hydride to give the corresponding diol that inherited the structure of the alternating sequence. The copolymerization ability of DHNP permitted its addition as a comonomer to an imidazole‐initiated polymerization of bisphenol A diglycidyl ether. The resulting networked polymer, of which main chain was endowed with the DHNP‐derived rigid naphthalene moieties, showed a higher glass transition temperature than that obtained similarly with using 3,4‐dihydrocoumarin (DHCM) as a comonomer, an analogous aromatic lactone bearing phenylene moiety instead of naphthalene moiety of DHNP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
9.
Radical copolymerization of alkyl 2‐norbornene‐2‐carboxylates (alkyl = Me 1a , nBu 1b ) with alkyl acrylates (alkyl = ethyl, methyl, and n‐butyl) was investigated. Copolymerization of 1a,b with the alkyl acrylates initiated by 1,1′‐azobis (cyclohexane‐1‐carbonitrile) at 85 °C proceeded to give random copolymers, although the homopolymerization of 1a,b did not proceed efficiently under the same conditions. Typically, bulk copolymerization of 1a with ethyl acrylate in a feed ratio of 1:3 ([ 1a ]:[EA]) afforded a copolymer with Mn = 33,300 containing 19.4 mol % of 1a unit in the composition. An increase of Tg derived from the incorporation of the rigid norbornane framework was observed, although the extent of the temperature rise was rather moderate. The ternary radical copolymerization of 1a,b /alkyl acrylate/N‐phenylmaleimide proceeded to give copolymers with the three repeating units in the main chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4597–4605, 2007  相似文献   

10.
A series of copolymers were easily synthesized via the chemical oxidative polymerization of 2‐pyridylamine (2PA) and aniline (AN) in an acidic aqueous medium. The yield, intrinsic viscosity, and solubility of the copolymers were studied through changes in the 2PA/AN molar ratio, polymerization temperature, oxidant, oxidant/monomer molar ratio, and polymerization medium. The resulting 2PA/AN copolymers were characterized by 1H NMR, Fourier transform infrared, wide‐angle X‐ray diffraction, and thermogravimetric techniques. The results showed that the oxidative copolymerization from 2PA and AN was exothermic. The resultant copolymers were amorphous and exhibited enhanced solubility in comparison with polyaniline. The 2PA/AN copolymers showed the highest decomposition temperature (530 °C), the slowest maximum‐weight‐loss rate (1.2 %/min), the largest char yield (45 wt %), and the greatest degradation activation energy (65 kJ/mol) in nitrogen. The thermostability of the copolymers was generally higher in nitrogen than in air. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4407–4418, 2000  相似文献   

11.
The tert‐butyllithium (t‐BuLi) initiated polymerization of carefully purified 2‐vinylnaphthalene in toluene containing small amounts of tetrahydrofuran with respect to t‐BuLi proceeds on a timescale of several hours without significant deactivation and allows the synthesis of very narrow molecular weight distribution poly‐(2‐vinylnaphthalene) (P2VN) (polydispersities as low as 1.04) and molecular weights between 1000 and 20,000. The absence of P2VN‐Li deactivation at these conditions is also indicated by high degrees of trimethylsilyl end functionalization (>95%) and coupling with dibromoxylene. The respective polymerizations of conventionally purified monomer reveal a complex polymerization profile consistent with deactivation by 2‐acetylnaphthalene during the early stages of the reaction. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3034–3041, 2001  相似文献   

12.
Copolymerization of binary mixtures of alkyl (meth)acrylates has been initiated in toluene by a mixed complex of lithium silanolate  (s-BuMe2SiOLi) and s-BuLi (molar ratio > 21) formed in situ by reaction of s-BuLi with hexamethylcyclotrisiloxane (D3). Fully acrylate and methacrylate copolymers, i.e., poly(methyl acrylate-co-n-butyl acrylate), poly(methyl methacrylate-co-ethyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate) of a rather narrow molecular weight distribution have been synthesized. However, copolymerization of alkyl acrylate and methyl methacrylate pairs has completely failed, leading to the selective formation of homopoly(acrylate). As result of the isotactic stereoregulation of the alkyl methacrylate polymerization by the s-BuLi/s-BuMe2SiOLi initiator, highly isotactic random and block copolymers of (alkyl) methacrylates have been prepared and their thermal behavior analyzed. The structure of isotactic poly(ethyl methacrylate-co-methyl methacrylate) copolymers has been analyzed in more detail by Nuclear Magnetic Resonance (NMR). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2525–2535, 1999  相似文献   

13.
Well‐defined ω‐cholesteryl poly(n‐hexyl isocyanate) (PHIC–Chol), as well as diblock copolymers of n‐hexyl isocyanate (HIC) with styrene, PS‐b‐PHIC [PS = polystyrene; PHIC = poly(n‐hexyl isocyanate)], and triblock terpolymers with styrene and isoprene, PS‐b‐PI‐b‐PHIC and PI‐b‐PS‐b‐PHIC (PI = polyisoprene), were synthesized with CpTiCl2(OR) (R = cholesteryl group, PS, or PS‐b‐PI) complexes. The synthetic strategy involved the reaction of the precursor complex CpTiCl3 with cholesterol or the suitable ω‐hydroxy homopolymer or block copolymer, followed by the polymerization of HIC. The ω‐hydroxy polymers were prepared by the anionic polymerization of the corresponding monomers and the reaction of the living chains with ethylene oxide. The reaction sequence was monitored by size exclusion chromatography, and the final products were characterized by size exclusion chromatography (light scattering and refractive‐index detectors), nuclear magnetic resonance spectroscopy, and, in the case of PHIC–Chol, differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6503–6514, 2005  相似文献   

14.
Two ways to obtain aliphatic polyesters (PEs) from dimethylketene and acetaldehyde were investigated. On the one hand, a direct anionic copolymerization was carried out in toluene at ?60 °C. The resulting polymer was mainly composed of PE units. On the other hand, a two‐step process involving the synthesis of 3,3,4‐trimethyl‐2‐oxetanone by [2+2] cycloaddition, followed by its ring‐opening polymerization, with various initiators and solvents, led to the expected PE. Molecular weights up to 9000 g mol?1 (measured by nuclear magnetic resonance (NMR)), with narrow polydispersity around 1.2, were obtained. These polymers were found stable up to 274 °C under nitrogen and a broad and complex endothermic peak attributed to crystallinity was observed near 139 °C by differential scanning calorimetry (DSC). The crystallinity, measured by X‐ray diffraction, was close to 0.45. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

16.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

17.
Cationic copolymerization of n‐butyl glycidyl ether (BGE) and 3‐isochromanone (ICM) was investigated using trifluoromethanesulfonic acid (TfOH) as an initiator at 100 °C. In the copolymerization, the reactive site of ICM with the propagating cation was completely different from that in its homopolymerization: in the former, the propagating cation reacted with the carbonyl oxygen of ICM, while in the latter, the propagating cation reacted with the aromatic ring of ICM. In spite of the potential of ICM to undergo the homopolymerization, in the present copolymerization, ICM was consumed smoothly only in the presence of epoxide. As a result, the copolymerization proceeded in a statistic manner to afford the corresponding copolymer bearing ICM‐derived ester linkages distributed in the main chain. Cationic copolymerization of bisphenol A‐diglycidyl ether and ICM was also performed to synthesize the corresponding networked polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4213–4220  相似文献   

18.
2,5‐Diketopiperazines (DKPs) are the smallest cyclic dipeptides found in nature with various attractive properties. In this study, we have demonstrated the successful modification of proline‐based DKPs using anionic ring‐opening polymerization (AROP) as a direct approach. Four different proline‐based DKPs with various side chains and increasing steric hindrance were used as initiating species for the polymerization of 1,2‐epoxybutane or ethoxyethyl glycidyl ether in the presence of t‐BuP4 phosphazene base. The addition of a Lewis acid, tri‐isobutyl aluminum, to the reaction mixture strongly decreased the occurrence of side reactions. Impact of the DKP side‐chain functionalities on molar mass control and dispersity was successfully evidenced. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1008–1016  相似文献   

19.
20.
Cationic copolymerization of racemic‐β‐butyrolactone (β‐BL) with l,l ‐lactide (LA) initiated by alcohol and catalyzed by trifluoromethanesulfonic acid proceeding by activated monomer (AM) mechanism was investigated. Although both comonomers were present from the beginning in the reaction mixture, polymerization proceeded in sequential manner, with poly‐BL formed at the first stage acting as a macroinitiator for the subsequent polymerization of LA. Such course of copolymerization was confirmed by following the consumption of both comonomers throughout the process as well as by observing the changes of growing chain‐end structure using 1H NMR. 13C NMR analysis and thermogravimetry revealed the block structure of resulting copolymers. The proposed mechanism of copolymerization was confirmed by the studies of changes of 1H NMR chemical shift of acidic proton in the course of copolymerization, providing an indication that indeed protonated species and hydroxyl groups are present throughout the process, as required for AM mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4873–4884  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号