首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

2.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

3.
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007  相似文献   

4.
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006  相似文献   

5.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

6.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

7.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   

8.
PPV‐based copolymers containing phenothiazine‐5‐oxide and phenothiazine‐5, 5‐dioxide moieties have been successfully synthesized by Wittig‐Horner reaction and characterized by means of UV‐vis, photoluminescence, electroluminescence spectra, and cyclic voltammetry. All of these copolymers can be dissolved in common organic solvents such as chloroform, tetrahydrofuran, and toluene. The PL maxima in the film state are located at 582, 556, and 552 nm for P1, P2, and P3, respectively. The HOMO and LUMO levels of P2 are found to be ?5.21 and ?2.68 eV, respectively; whereas those of P3 are found to be ?5.26 and ?2.71 eV, respectively. The cyclic voltammetry result indicates that the conversion of electron‐donating sulfide to electron‐withdrawing sulfoxide or sulfone group in polymers plays a dominating role in increasing its oxidation potential. Yellowish‐green light ranging from 568 to 540 nm was observed for the single layer device with the configuration of ITO/Polymer/Ca/Al. Double layer devices with Zn (BTZ)2 as a hole blocking layer exhibited enhanced EL performance compared to the single layer devices. The maximum brightness of the double layer devices of P1, P2, and P3 is 278, 400, and 796 cd/m2, respectively. The results of EL and electrochemical analyses revealed that they are promising candidate materials for organic, light‐emitting diodes with hole‐transporting ability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4291–4299, 2007  相似文献   

9.
A disubstituted polyacetylene consisting of a poly(diphenylacetylene) backbone and a 1,2,3,4,5‐pentaphenylsilole (SiC4Ph5) pendant, that is, ? {(C6H5) C?C [C6H4O(CH2)3C?CSiC4Ph5]}n? (PS3DPA), was synthesized, and its light emission from both the backbone and the pendant was evaluated. The polymerization of C6H5C?CC6H4O(CH2)3C?CSiC4Ph5 with two ethynyl groups was effected with WCl6–Ph4Sn as the catalyst. The structure and properties of PS3DPA were characterized and evaluated by IR, UV, NMR, thermogravimetric analysis, differential scanning calorimetry, photoluminescence, and electroluminescence analyses. The ethynyl group of the diphenylacetylene moiety was polymerized exclusively, giving a soluble PS3DPA. The chloroform solution of PS3DPA showed a backbone emission that peaked at 522 nm, whereas the silole pendant was nonradiative at room temperature. The polymer did not show the aggregation‐induced emission phenomenon, probably because the silole clusters were difficult to form when the polymer chains aggregated because of the very high rigidity of the main chain. Intramolecular rotations of the phenyl groups of the silole moieties were responsible for the nonradiative decay of the silole chromophore. The intramolecular rotations, however, could be largely restricted in a cooling process of the polymer solution, showing cooling‐enhanced emission. The silole emission became dominant at lower temperatures. A multilayer electroluminescence device based on PS3DPA emitted a green light that peaked at 512 nm. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2487–2498, 2006  相似文献   

10.
Four copolyfluorenes chemically doped with 0.1 and 1 mol % 3,7‐bis[2‐thiophene‐2‐yl)‐2‐cyanovinyl]phenothiazine ( PFPhT ) or 2,5‐bis[2‐(thiophene‐2‐yl)‐2‐cyanovinyl]thiophene chromophores ( PFThT ) were synthesized using the Suzuki coupling reaction and applied in white‐light‐emitting devices. They were characterized by GPC, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability (Td > 420 °C) and moderate glass transition temperatures (>95 °C). The PhT‐Br and ThT‐Br showed PL peaks at 586 and 522 nm (with a shoulder at 550 nm). In film state, PL spectra of the copolymers comprised emissions from the fluorene segments and the chromophores due to incomplete energy transfer. Both monomers exhibited low LUMO levels around ?3.50 to ?3.59 eV, whereas the PhT‐Br owned the higher HOMO level (?5.16 eV) due to its electron‐donating phenothiazine core. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed broad emission depending on the chromophore contents. The maximum brightness and maximum current efficiency of PFPhT2 ( PFThT1 ) device were 8690 cd/m2 and 1.43 cd/A (7060 cd/m2 and 0.98 cd/A), respectively. White‐light emission was realized by further blending PFPhT2 with poly(9,9‐dihexylfluorene) (w/w = 10/1), with the maximum brightness and maximum current efficiency being 10,600 cd/m2 and 1.85 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 833–844, 2009  相似文献   

11.
Two novel alternating copolymers, poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(4‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P1 ) and poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(3‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P2 ), derived from 9,9‐dihexylfluorene and diketopyrrolopyrrole (DPP), have been successfully synthesized through palladium‐catalyzed Suzuki polycondensation in good yields. P1 and P2 possess moderate molecular weights and polydispersities, well‐defined structures, and excellent thermal properties with an onset decomposition temperature around 400 °C. Both P1 and P2 in thin films exhibit red photoluminescence from DPP species exclusively, with peaks at 609 and 616 nm, respectively. Cyclic voltammetry studies show that P1 and P2 have low‐lying lowest unoccupied molecular orbital energy levels at ?3.65 eV and reversible reduction processes, so these polymers may constitute another kind of red‐emitting polymer with high electron affinity. Preliminary electroluminescent results of devices with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al configuration reveal that P1 may be a promising candidate for red emitters with a maximum brightness of 153 cd/m2 and a maximum external quantum efficiency of 0.13%, whereas the performance of P2 is relatively poor. These differences might originate from different conjugation lengths in their main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2395–2405, 2006  相似文献   

12.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

13.
A new series of conjugated polymers having diphenylanthracene vinylene biphenylene and diphenylanthracene vinylene terphenylene in the main chain and fluorene pendant group, were synthesized by nickel catalized Yamamoto coupling and palladium catalized Suzuki coupling. The obtained polymers showed good solubility in the common organic solvent and number average molecular weights of 14,000–9500 with a polydispersity indexes ranging from 1.7 to 2.1. Both polymers possess excellent thermal stability with glass transition temperatures of 123–127 °C and the onset decomposition temperatures of 420–400 °C. The obtained polymers showed blue emission (λmax = 461 for PFPA and λmax = 455 nm for PFPAME) in PL spectra, specially, PFPAME containing diphenylanthracene vinylene terphenylenevinylene showed the consistent emission in the solution and film. The double‐layered device with an ITO/PEDOT/PFPAME/LiF/Al structure has a turn‐on voltage of about 5.8 V, maximum brightness of 152 cd/m2 and an electroluminescent efficiency of 0.143 lm/W, and stable blue EL emission that is not altered by increased voltage. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5908–5916, 2009  相似文献   

14.
15.
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005  相似文献   

16.
17.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

18.
We synthesized two fluorene‐based copolymers poly[(2,5‐bis(4‐hexylthiophen‐2‐yl)thiazolo[5,4‐day]thiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] ( PF‐TTZT), and poly[(5,5′‐bis(4‐hexylthiophen‐2‐yl)‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9′‐dioctylfluorene‐2,7‐diyl)] (PF‐TBTT), which contain the electron‐withdrawing moieties, thiazolothiazole, and bithiazole, respectively. Through electrochemical studies, we found that these two polymers exhibit stable reversible oxidation and reduction behaviors. Moreover, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PF‐TBTT are lower than those of PF‐TTZT, and the bandgap of PF‐TBTT is smaller than that of PF‐TTZT. Thus the bithiazole moiety in PF‐TBTT is more electron‐withdrawing than the thiazolothiazole moiety in PF‐TTZT. Light‐emitting devices with indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT)/polymer/bis(2‐methyl‐8‐quinolinato)‐4‐phenylphenolate aluminum (BAlq)/LiF/Al configurations were fabricated. The performance of the PF‐TBTT device was found to be almost three times better than that of the PF‐TTZT device, which is because electron injection from the cathode to PF‐TBTT is much easier than for PF‐TTZT. We also investigated the planarity and frontier orbitals of the electron donor‐acceptor (D‐A) moieties with computational calculations using ab initio Hartree–Fock with the split‐valence 6‐31G* basis set. These calculations show that TBTT has a more nonplanar structure than TTZT and that the bithiazole moiety is more electron‐withdrawing than thiazolothiazole. These calculations are in good agreement with the experimental results. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7148–7161, 2008  相似文献   

19.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

20.
Soluble yellow/orange‐emitting poly[tris(2,5‐dihexyloxy‐1,4‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)] derivatives ( 6 ) were synthesized and characterized. These polymers contained oligo(p‐phenylene vinylene) chromophores of equal conjugation length, which were jointed via a common m‐phenylene unit. An optical comparison of 6 and its model compound ( 8 ) at room temperature and low temperatures revealed the similarity in their absorption and fluorescence band structures. The vibronic band structure of 6 was assigned with the aid of the spectroscopic data for 8 at the low temperatures. 6 was electroluminescent and had an emission maximum wavelength at approximately 565 nm. With the device indium tin oxide/PEDOT/ 6 /Ca configuration, the polymer exhibited an external quantum efficiency as high as 0.25%. Simple substitution on m‐phenylene of 6 raised the electroluminescence output by a factor of about 10. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5853–5862, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号