首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.  相似文献   

2.
Honey is a natural product and can be described by its botanical origin, determined by the plants from which the bees collect nectar. It significantly influences the taste of honey and is often used as a quality criterion. Unfortunately, this opens up the possibility of food fraud. Currently, various methods are used to check the authenticity of monofloral honey. The laborious, manual melissopalynology is considered an essential tool in the verification process. In this work, the volatile organic compounds obtained from the headspace of honey are used to prove their authenticity. The headspace of 58 honey samples was analyzed using a commercial easy-to-use gas chromatography-coupled ion mobility spectrometer with a headspace sampler (HS-GCxIMS). The honey samples were successfully differentiated by their six different botanical origins using specific markers with principal component analysis in combination with linear discriminant analysis. In addition, 15 honey-typical compounds were identified using measurements of reference compounds. Taking a previously published strategy, retention times of marker compounds were correlated with GC-coupled mass spectrometry (GC-MS) measurements to assist in the identification process.  相似文献   

3.
Coffee is a very popular beverage worldwide. However, its composition and characteristics are affected by a number of factors, such as geographical and botanical origin, harvesting and roasting conditions, and brewing method used. As coffee consumption rises, the demands on its high quality and authenticity naturally grows as well. Unfortunately, at the same time, various tricks of coffee adulteration occur more frequently, with the intention of quick economic profit. Many analytical methods have already been developed to verify the coffee authenticity, in which the high-performance liquid chromatography (HPLC) plays a crucial role, especially thanks to its high selectivity and sensitivity. Thus, this review summarizes the results of targeted and non-targeted HPLC analysis of coffee-based products over the last 10 years as an effective tool for determining coffee composition, which can help to reveal potential forgeries and non-compliance with good manufacturing practice, and subsequently protects consumers from buying overpriced low-quality product. The advantages and drawbacks of the targeted analysis are specified and contrasted with those of the non-targeted HPLC fingerprints, which simply consider the chemical profile of the sample, regardless of the determination of individual compounds present.  相似文献   

4.
Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey.  相似文献   

5.
6.
Volatile profiles of unifloral honeys and meads prepared in different ways (boiled-saturated, not boiled-unsaturated) were investigated by headspace solid-phase micro extraction (HS-SPME) and dehydration homogeneous liquid–liquid extraction (DHLLE) followed by GC-FID/MS analyses. The obtained data were analyzed by principal component analysis (PCA) to evaluate the differences between the investigated products. The volatile profiles of honey as well as the boiled and the not boiled meads prepared from it showed significant discrepancies. The meads contained more aliphatic acids and esters but fewer monoterpenes and aliphatic hydrocarbons than the honey. Significant/substantial differences were found between the boiled (more aliphatic alcohols and acids) and the not boiled meads (more aliphatic hydrocarbons and esters). Some compounds related to yeast metabolism, such as tryptophol, may be considered markers of honey fermentation. This research allowed us to identify chemical markers of botanical origin, retained and detectable in the meads: 4-isopropenylcyclohexa-1,3-diene-1-carboxylic acid and 4-(1-hydroxy-2-propanyl)cyclohexa-1,3-diene-1-carboxylic acid for linden; valeric acid, γ-valerolactone, p-hydroxybenzoic acid for buckwheat; 4-hydroxybenzeneacetic acid, homovanillic acid and trans-coniferyl alcohol for honeydew; and methyl syringate for canola.  相似文献   

7.
The objective of the study was to check the authenticity of Hungarian honey using physicochemical analysis, near infrared spectroscopy, and melissopalynology. In the study, 87 samples from different botanical origins such as acacia, bastard indigo, rape, sunflower, linden, honeydew, milkweed, and sweet chestnut were collected. The samples were analyzed by physicochemical methods (pH, electrical conductivity, and moisture), melissopalynology (300 pollen grains counted), and near infrared spectroscopy (NIRS:740–1700 nm). During the evaluation of the data PCA-LDA models were built for the classification of different botanical and geographical origins, using the methods separately, and in combination (low-level data fusion). PC number optimization and external validation were applied for all the models. Botanical origin classification models were >90% and >55% accurate in the case of the pollen and NIR methods. Improved results were obtained with the combination of the physicochemical, melissopalynology, and NIRS techniques, which provided >99% and >81% accuracy for botanical and geographical origin classification models, respectively. The combination of these methods could be a promising tool for origin identification of honey.  相似文献   

8.
Extra virgin olive oil (EVOO) is recognized for its nutritional virtues and the beneficial health effects deriving from its hydrophilic fraction (phenolic acids, phenolic alcohols, flavonoids, and secoiridoids). The phenolic compounds of EVOOs possess multiple biological properties such as antioxidant, antimicrobial, anticarcinogenic, and anti-inflammatory properties, among others. Considering that EVOOs produced in Greece are recognized as high-quality products due to their rich phenolic content, it is imperative to characterize Greek monovarietal EVOOs and ensure that their uniqueness is closely linked to their botanical and territorial origin. In this work, an ultra-high-performance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method combined with target and suspect screening was used to characterize monovarietal EVOOs of the Kolovi variety from Lesvos, and thereby establish their phenolic fingerprint. Overall, 25 phenols were determined, and the total quantification and semi-quantification results ranged between 251 and 1230 mg/kg, highlighting the high phenolic content of the Kolovi variety from the island of Lesvos in the North Aegean.  相似文献   

9.
Honey is considered a desirable ingredient in a range of different foodstuffs because of its nutrient and therapeutic effect. The honey characteristics mainly depend on the type of vegetation visited by the bees and the climatic conditions in which the plants are growing. Therefore, the purity, floral and geographical origin and authenticity are important factors influencing the overall perception of honey and honey‐based products in terms of quality and price. An important parameter in this picture is the elemental composition of honey because it can be linked with the floral type of honey, floral plant density and the botanical origin of nectar and pollens. In this work, the concentration range variation of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Na, Ni, K, Pb, Sr, Ti, V and Zn) was investigated in four varieties of honey (linden, acacia, rape, and sunflower) originating from Romania, because the elemental profile of honey may give important information to differentiate its geographical and varietal origin for authenticity purpose. All the determinations were carried out by inductively coupled plasma quadrupole mass spectrometry (ICP‐Q‐MS). The most abundant minerals decreased in the following order: K > Ca > Mg > Na, having the mean values of 248.70, 59.97, 20.54 and 11.92 mg kg?1, respectively. The mineral content marks the differences in honey samples from different botanical origin and can be used as a tool for authentication purposes and also extends its applicability to assess the traceability of honey. Analysis of variance showed the preliminary relationships between the elements and samples. Further, the discrimination between different studied honey samples was achieved by principal component analysis (PCA). The multivariate analysis of the data allowed us to separate the honey samples into distinct groups according to their macroelement and microelement composition, emphasizing the origin of variation of element concentrations by honey type. Therefore, this approach might be potentially useful for the control of honey quality, origin or authenticity, and even to use the honey as environmental tracer.  相似文献   

10.
A potential method for the discrimination and prediction of honey samples of various botanical origins was developed based on the non‐targeted volatile profiles obtained by solid‐phase microextraction with gas chromatography and mass spectrometry combined with chemometrics. The blind analysis of non‐targeted volatile profiles was carried out using solid‐phase microextraction with gas chromatography and mass spectrometry for 87 authentic honey samples from four botanical origins (acacia, linden, vitex, and rape). The number of variables was reduced from 2734 to 70 by using a series of filters. Based on the optimized 70 variables, 79.12% of the variance was explained by the first four principal components. Partial least squares discriminant analysis, naïve Bayes analysis, and back‐propagation artificial neural network were used to develop the classification and prediction models. The 100% accuracy revealed a perfect classification of the botanical origins. In addition, the reliability and practicability of the models were validated by an independent set of additional 20 authentic honey samples. All 20 samples were accurately classified. The confidence measures indicated that the performance of the naïve Bayes model was better than the other two models. Finally, the characteristic volatile compounds of linden honey were tentatively identified. The proposed method is reliable and accurate for the classification of honey of various botanical origins.  相似文献   

11.
S. Buratti  S. Benedetti  M.S. Cosio 《Talanta》2007,71(3):1387-1392
In this paper is described the applicability of a flow injection system, operating with an amperometric detector, for measurement in rapid and simple way the antioxidant power of honey, propolis and royal jelly. The proposed method evaluates the reducing power of selected antioxidant compounds and does not require the use of free radicals or oxidants. Twelve honey, 12 propolis and 4 royal jelly samples of different botanical and geographical origin were evaluated by the electrochemical method and the data were compared with those obtained by the DPPH assay. Since a good correlation was found (R2 = 0.92) the proposed electrochemical method can be successfully employed for the direct, rapid and simple monitoring of the antioxidant power of honeybee products. Furthermore, the total phenolic content of samples was determined by the Folin-Ciocalteau procedure and the characteristic antioxidant activities showed a good correlation with phenolics (R2 = 0.96 for propolis and 0.90 for honey).  相似文献   

12.
The study compared the content of eight phenolic acids and four flavonoids and the antioxidant activity of six Polish varietal honeys. An attempt was also made to determine the correlations between the antioxidant parameters of the honeys and their polyphenol profile using principal component analysis. Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS) and reduction capacity (FRAP) were determined spectrophotometrically, and the phenolic compounds were determined using high-performance liquid chromatography (HPLC). The buckwheat honeys showed the strongest antioxidant activity, most likely because they had the highest concentrations of total phenols, total flavonoids, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, vanillic acid and chrysin. The principal component analysis (PCA) of the data showed significant relationships between the botanic origin of the honey, the total content of phenolic compounds and flavonoids and the antioxidant activity of the six Polish varietal honeys. The strongest, significant correlations were shown for parameters of antioxidant activity and TPC, TFC, p-hydroxybenzoic acid, caffeic acid and p-coumaric acid. Analysis of four principal components (explaining 86.9% of the total variance), as a classification tool, confirmed the distinctiveness of the Polish honeys in terms of their antioxidant activity and content of phenolic compounds.  相似文献   

13.
Many of the marker compounds analyzed in herbal products are redox-active phenolic molecules, which are commonly found in plants as components of glycosides and starch polymers. Variability in degree of sample hydrolysis can occur due to differences in water content, pH, and temperature. Sonication versus shaking during extraction can also influence hydrolysis and oxidation of sensitive compounds. Some traditional botanical extract marker compounds are esters and glycosides of phenolics such as echinacoside from Echinacea while others are free phenolics, such as quercetin from glycosides in Ginkgo. Optimizing hydrolysis conditions maximizes free quercetin levels, but lowers echinacoside levels. Furthermore, acidic hydrolysis conditions mimic stomach conditions encountered by oral supplements and protect resulting free phenolics from oxidation. Oxidative degradation of botanical phenolic markers can be initiated by light, sonication, oxygen, basic pH conditions, heat, redox-active solvents, and formulation additives. Some phenolic markers reversibly cycle through multiple oxidation states creating a formula-specific equilibrium of oxidation states. Finished product formulations that include easily oxidized phenolics, carbonates, phosphates, and transition metals affect sample hydrolysis degree and redox equilibria, and quantitation. By recognizing and controlling hydrolysis and oxidation variables, more accurate and rugged methods can be developed allowing for improved botanical standardization and finished product analysis.  相似文献   

14.
An improved and simplified analytical method which offers rapid, accurate determination and identification of phenolic compounds in honey samples is reported. The honey samples were diluted by acidified water (pH 2), and analyzed by HPLC–ESI-MS/MS. Simultaneously determination of phenolic acids and flavonoids was carried out by a liquid chromatography–mass spectrometry. Comparison between atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) was performed by analysis of standards. Fragmentation of analytes for subsequent selective Multiple Reaction Monitoring (MRM) analysis was investigated in negative mode. Sample preparation without separation of sugars and clean-up procedure, followed by fast chromatographic separation using a narrow-bore column C18 (50 mm × 2.1 mm, 3 μm) allowed the analysis to be completed in a short run time. LODs were ranged between 1 and 15 ng L−1 for p-coumaric acid and naringenin, respectively. The method was applied for determination of phenolic acids and flavonoids in honey samples from different botanical origin.  相似文献   

15.
The aim of this work was to establish an analytical method for identifying the botanical origin of honey, as an alternative to conventional melissopalynological, organoleptic and instrumental methods (gas-chromatography coupled to mass spectrometry (GC–MS), high-performance liquid chromatography HPLC). The procedure is based on the 1H nuclear magnetic resonance (NMR) profile coupled, when necessary, with electrospray ionisation-mass spectrometry (ESI-MS) and two-dimensional NMR analyses of solid-phase extraction (SPE)-purified honey samples, followed by chemometric analyses. Extracts of 44 commercial Italian honeys from 20 different botanical sources were analyzed.Honeydew, chestnut and linden honeys showed constant, specific, well-resolved resonances, suitable for use as markers of origin. Honeydew honey contained the typical resonances of an aliphatic component, very likely deriving from the plant phloem sap or excreted into it by sap-sucking aphids. Chestnut honey contained the typical signals of kynurenic acid and some structurally related metabolite.In linden honey the 1H NMR profile gave strong signals attributable to the mono-terpene derivative cyclohexa-1,3-diene-1-carboxylic acid (CDCA) and to its 1-O-β-gentiobiosyl ester (CDCA-GBE). These markers were not detectable in the other honeys, except for the less common nectar honey from rosa mosqueta. We compared and analyzed the data by multivariate techniques. Principal component analysis found different clusters of honeys based on the presence of these specific markers.The results, although obviously only preliminary, suggest that the 1H NMR profile (with HPLC–MS analysis when necessary) can be used as a reference framework for identifying the botanical origin of honey.  相似文献   

16.
An array of real honey samples from 3 difl^rent botanical origins and 4 provinces of China, as well as two honeys with common adulterantsfwhite sugar and high fructose com syrup(HFCS)], were analyzed with a new strategy of “simple cluster analysis" based on physicochemical parameters of honey. The results showed that the physicochemical parameters varied greatly for different honey samples. For example, the minimum conductivity of honey samples was less than 1/17 of the maximum value. Therefore, the physicochemical parameters could be used to distinguish different types of honey. The results are promising, as different kinds of testing honey were successfully discriminated into different groups, allowing us to verify the authenticity of honeys. Furthermore, this approach was followed to successfully analyze two honeys with common adulterants, which are difficult to be identified when they are mixed with true honeys. The results indicated the accuracy and reliability of the proposed strategy, and provided more references for the quality classification of honeys.  相似文献   

17.
18.
Wine metabolomics constitutes a powerful discipline towards wine authenticity assessment through the simultaneous exploration of multiple classes of compounds in the wine matrix. Over the last decades, wines from autochthonous Greek grape varieties have become increasingly popular among wine connoisseurs, attracting great interest for their authentication and chemical characterization. In this work, 46 red wine samples from Agiorgitiko and Xinomavro grape varieties were collected from wineries in two important winemaking regions of Greece during two consecutive vintages and analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS). A targeted metabolomics methodology was developed, including the determination and quantification of 28 phenolic compounds from different classes (hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavonoids). Moreover, 86 compounds were detected and tentatively identified via a robust suspect screening workflow using an in-house database of 420 wine related compounds. Supervised chemometric techniques were employed to build an accurate and robust model to discriminate between two varieties.  相似文献   

19.
The volatile profiles of 51 samples from 12 monofloral-labelled Portuguese honey types were assessed. Honeys of bell heather, carob tree, chestnut, eucalyptus, incense, lavender, orange, rape, raspberry, rosemary, sunflower and strawberry tree were collected from several regions from mainland Portugal and from the Azores Islands. When available, the corresponding flower volatiles were comparatively evaluated. Honey volatiles were isolated using two different extraction methods, solid-phase microextraction (SPME) and hydrodistillation (HD), with HD proving to be more effective in the number of volatiles extracted. Agglomerative cluster analysis of honey HD volatiles evidenced two main clusters, one of which had nine sub-clusters. Components grouped by biosynthetic pathway defined alkanes and fatty acids as dominant, namely n-nonadecane, n-heneicosane, n-tricosane and n-pentacosane and palmitic, linoleic and oleic acids. Oxygen-containing monoterpenes, such as cis- and trans-linalool oxide (furanoid), hotrienol and the apocarotenoid α-isophorone, were also present in lower amounts. Aromatic amino acid derivatives were also identified, namely benzene acetaldehyde and 3,4,5-trimethylphenol. Fully grown classification tree analysis allowed the identification of the most relevant volatiles for discriminating the different honey types. Twelve volatile compounds were enough to fully discriminate eleven honey types (92%) according to the botanical origin.  相似文献   

20.
Honey is a natural product with multiple health benefits. The paper presents the chemical characterization and the antioxidant and antimicrobial potential of ten types of honey (knotweed, linden, wild cherry, acacia, honeydew, oilseed rape, sunflower, phacelia, plain polyflora and hill polyflora) from the Banat region, Romania. We studied the water content, dry matter, impurities, acidity and pH of honey. We also determined the content of reducing sugar, minerals and flavonoids and the total phenolic content. All honey samples analysed showed good nutritional characteristics according to the standard codex for honey. From the analysis of the mineral content of the honey samples, we observed a variability in the macro and microminerals, influenced by the botanical origin, ranging between 0.25% (wild cherry honey) and 0.54% (honeydew). The toxic metals’ (Cd and Pb) levels met the standard for almost all samples analysed except for knotweed. The flavonoid content of the samples ranged from 9.29 mg QE/100 g for wild cherry honey to 263.86 mg QE/100 g for linden honey, and for polyphenols between 177.6 mgGAE/100 g for acacia honey and 1159.3 mgGAE/100 g for honeydew. The best antioxidant capacity was registered in the case of linden honey (79.89%) and honeydew (79.20%) and the weakest in acacia (41.88%) and wild cherries (50.4%). All studied honey samples showed antimicrobial activity, depending on the type of honey, concentration and strain analysed. The novelty of this study is given by the complex approach of the study of honey quality, both from the perspective of chemical attributes and the evaluation of the antimicrobial potential on specific strains in correlation with the botanical and geographical origin of the analyzed area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号