首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of S= 5/2 S= 1/2 spin transition studies in Fe(III) chelates with azomethin ligands showing different dentate numbers are generalized. The current state of the problem is considered and the criteria for optimization of the synthesis of Fe(III) complexes with different spin states are discussed.  相似文献   

2.
A new hydroxo‐bridged dimeric Cr(III) complex [Cr(saltn)OH]2·4H2O [H2saltn=N,N′‐bis(salicylidene)trimethylenediamine] has been synthesized and its structural and magnetic properties have been investigated. The complex crystallizes in the triclinic space group P‐1 with one dimeric formula unit in a cell of dimensions a=0.95828(19) nm, b=0.95926(19) nm, c=1.0437(2) nm, α=86.77(3)°, β=82.48(3)°, and γ=64.93(3)°. The geometry around each chromium(III) center is six‐coordinate, distorted‐octahedral. The bridging Cr2O2 unit is strictly planar, as required by the crystallographic symmetry. The Cr? O? Cr′ bridging angle is 99.94(16)°, and the distance between Cr…Cr′ is 0.3019 nm. The magnetic susceptibility of the complex has been examined in the range of 2‐300 K. By using the spin‐spin coupled model for an S1=S2=3/2 dimeric system , the magnetic data were fitted to give the parameters of g=2.01(1), J=‐0.85(2) cm‐1, and zJ' =0.18(3)cm‐1, indicating the presence of a weak antiferromagnetic spin‐exchange interaction between the Cr(III) ions in the binuclear complex.  相似文献   

3.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

4.
The reaction of [FeL(MeOH)2] (L being a tetradentate [N2O2]2? coordinating Schiff base like ligand [([3,3′]‐[1,2‐phenylenebis(iminomethylidyne)]bis(2,4‐pentane‐dionato)(2‐)N,N′,O2,O2′], MeOH = methanol) with 4,4′‐bipyridine (bipy) results in the formation of a new iron(II ) spin crossover coordination polymer of the formula [FeL(bipy)] ( 1 ). T‐dependent susceptibility measurements revealed an abrupt HS ? LS spin transition with an approximately 18 K‐wide thermal hysteresis loop (T1/2 = 237 K and T1/2 = 219 K). The isolation of crystals suitable for X‐ray structure analysis allowed the determination of the motive of the molecule structure of the first 1‐D chain compound with hysteresis in the HS form at 250 K. Despite the low qualtity of the data, we were able to obtain some insight into the interplay of covalent and elastic interactions that are both responsible for the high cooperative interactions during the spin transition in this compound.  相似文献   

5.
A new family of five ethene‐bridged diiron(III)‐μ‐hydroxo bisporphyrins with the same core structure but different counter anions, represented by the general formula [Fe2(bisporphyrin)]OH ? X (X=counter anion), is reported herein. In these complexes, two different spin states of Fe are stabilized in a single molecular framework. Protonation of the oxo‐bridged dimer 1 by strong Brønsted acids such as HI, HBF4, HPF6, HSbF6, and HClO4 produces the μ‐hydroxo complexes with I5? ( 2 ), BF4? ( 3 ), PF6? ( 4 ), SbF6? ( 5 ), and ClO4? ( 6 ) as counter anions, respectively. The X‐ray structures of 2 and 6 have been determined, which provide a rare opportunity to investigate structural changes upon protonation. Spectroscopic characterization has revealed that the two iron(III) centers in 2 are nonequivalent with nearly high and admixed‐intermediate spins in both the solid state and solution. Moreover, the two different FeIII centers of 3 – 5 are best described as having admixed‐high and admixed‐intermediate spins with variable contributions of S=5/2 and 3/2 for each state in the solid, but two different admixed‐intermediate spins in solution. In contrast, the two FeIII centers in 6 are equivalent and are assigned as having high and intermediate spin states in the solid and solution, respectively. The X‐ray structures reveal that the Fe? O bond length increases on going from the μ‐oxo to the μ‐hydroxo complexes, and the Fe‐O(H)‐Fe unit becomes more bent, with the dihedral angle decreasing from 150.9(2)° in 1 to 142.3(3)° and 143.85(2)° in 2 and 6 , respectively. Variable‐temperature magnetic data have been subjected to a least‐squares fitting using the expressions derived from the spin Hamiltonians H=?2JS1?S2?μ?B+D[${S{{2\hfill \atop z\hfill}}}$ ?1/3S(S+1)] (for 2 , 3 , 4 , and 5 ) and H=?2JS1?S2 (for 6 ). The results show that strong antiferromagnetic coupling between the two FeIII centers in 1 is attenuated to nearly zero (?2.4 cm?1) in 2 , whereas the values are ?46, ?32.6, ?33.5, and ?34 cm?1 for 3 , 4 , 5 , and 6 , respectively.  相似文献   

6.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

7.
2′‐Substituted 5′,6′,7′,8′‐tetrahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 3a‐d were synthesized by condensation of 3‐substituted 5‐amino‐1,2,4‐triazoles 1a‐d with 2‐cyclohexylidene cyclohexanone 2 in DMF. The compounds 3 were hydrogenated with sodium borohydride in ethanol to give 2′‐substituted cis‐4a',5′,6′,7′,8′,8a'‐hexahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 4a‐d in high yields. The reactions of alkylation, acylation and sulfonylation of the compounds 4 were studied. The structure of the synthesized compounds was determined on the basis of NMR measurements including HSQC, HMBC, NOESY techniques and confirmed by the X‐ray analysis of 6 and 11b . The described synthetic protocols provide rapid access to novel and diversely substituted hydrogenated [1,2,4]triazolo[5,1‐b]quinazolines.  相似文献   

8.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

9.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

10.
Asymmetric oxidation of verbenone ethylene dithioacetal with m-chloroperoxybenzoic acid at different substrate-to-oxidant ratios in methylene chloride at ?10°C gave previously unknown (1S,1′S,2S,3′S,5S)-4,6,6-trimethylspiro[bicyclo[3.1.1]hept-3-ene-2,2′-[1,3]dithiolane] 1′,3′-dioxide, (1S,2S,3′S,5S)-4,6,6-trimethylspiro[bicyclo[3.1.1]hept-3-ene-2,2′-[1,3]dithiolane] 1′,1′,3′-trioxide, and (1S,5S)-4,6,6-trimethylspiro[bicyclo-[3.1.1]hept-3-ene-2,2′-[1,3]dithiolane] 1′,1′,3′,3′-tetraoxide whose structure was determined by X-ray analysis.  相似文献   

11.
Pyrimido[2“,1”:5′,6′]pyrazolo[3′,4′:4,5]‐pyrimido[1,6‐a]benzoimidazoloe‐2,8(1H,7H)‐diones, and [1,2,4]‐triazino‐[3“,4”:5′,6′]pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzimidazol‐8(7H)‐ones were synthesized in a good yields via 1‐amino‐4‐methyl‐3,4‐dihydro‐5H‐pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzoimidazolo‐5‐one and the appropriate active methylene compounds. Structures of the newly synthesized compounds were elucidated on the basis of elemental analyses, spectral data, and alternative synthesis methods whenever possible.  相似文献   

12.
Molecule-based magnetic materials are promising candidates for molecular spin qubits, which utilize spin relaxation behavior. Various kinds of transition metal complexes with S=1/2 have been reported to act as spin qubits with long spin-spin relaxation times (T2). However, the spin qubit properties of low-spin Ni(III) complexes are not as well known since Ni(III) compounds are often unstable. We report here the slow magnetic relaxation behavior and T2 values for three kinds of low-spin Ni(III) based complexes with S=1/2 under magnetically diluted conditions. [Ni(cyclam)X2]Y (cyclam=1,4,8,11-tetraazacyclotetradecane) with octahedral structures and [Ni(mnt)2] (mnt=maleonitriledithiolate) with a square-planar structure underwent slow magnetic relaxations in the presence of a dc magnetic bias field. From electron spin resonance (ESR) spectroscopy, the Ni(III) complexes exhibited observable T2, indicating that Ni(III) complexes are promising candidates for use as molecule-based spin qubits.  相似文献   

13.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. VIII. Synthesis of (3S,3′S)-7,8,7′,8′-Tetradehydroastaxanthin and (3S,3′S)-7,8-Didehydroastaxanthin (Asterinic Acid) The synthesis of all-trans-(3S,3′S)-3,3′-dihydroxy-7,8, 7′,8′-tetradehydro-β, β-carotene-4,4′-dione ( 1 ), of all-trans-(3S,3′S)-3,3′-dihydroxy-7, 8-didehydro-β,β-carotene-4,4′-dione ( 2 ) (asterinic acid = mixture of 1 and 2 ), and of their 9,9′-di-cis- and 9-cis-isomers is reported starting from (4′S)(2E)-5-(4′-hydroxy-2′, 6′,6′-trimethyl-3′-oxo-l′-cyclohexenyl)-3-methyl-2-penten-4-ynal ( 8 ). The absolute configuration (3S,3′S) for both components 1 and 2 of asterinic acid ex Asterias rubens is confirmed on the basis of spectroscopic and direct comparison.  相似文献   

14.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

15.
Density functional theory (DFT) calculations with different exchange‐correlation functionals were performed for a mixed valence Fe(II)/Fe(III) binuclear complex with μ‐methoxo and two μ‐carboxylate bridging ligands, (1) with geometry optimizations being performed for all possible spin multiplicities (MS = 2, 4, 6, 8, and 10). Within the exchange‐correlation functionals studied, only the hybrid GGA functionals B3P and B3LYP and also the pure GGA functional RPBE, predicts the geometry with high spin (S = 9/2) to be more stable than the geometry with low spin state (S = 1/2) by 20 kcal/mol, in agreement with the experimental findings. These functionals also predict the same stability order for the different spin states, being MS = 10>8>6>2>4. The meta‐GGA functionals TPSS and TPSSh and also the pure GGA functionals BLYP and BP86 predict different stability orders. The computed average EPR g‐tensor, gav, of 2.03, at the B3LYP level, is in good agreement with the experimental findings. Heisenberg exchange coupling constants, J, were calculated within the broken‐symmetry formalism, at the B3LYP level, showing that the two iron centers are antiferromagnetic coupling, with a very weak coupling constant of about ?7 cm?1, in good agreement with the experimental value. Additionally, the effect of using different multiplicities of the reference geometries on the computed J value is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

17.
The influence of a coordinated π‐radical on the spin crossover properties of an octahedral iron(II) complex was investigated by preparing and isolating the iron(II) complex containing the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane and the radical anion of N,N′‐diphenyl‐acenaphtene‐1,2‐diimine as ligands. This spin crossover complex was obtained by a reduction of the corresponding low‐spin iron(II) complex with the neutral diimine ligand, demonstrating that the reduction of the strong π‐acceptor ligand is accompanied by a decrease in the ligand field strength. Characterization of the iron(II) radical complex by structural, magnetochemical, and spectroscopic methods revealed that spin crossover equilibrium occurs above 240 K between an S=1/2 ground state and an S=3/2 excited spin state. The possible origins of the fast spin interconversion observed for this complex are discussed.  相似文献   

18.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

19.
The reaction between 3‐amino‐2,3‐dihydro‐7,9‐dimethyl‐2‐thioxo‐pyrido[3′,2′:4,5]thieno[3,2‐d]‐pyrimidin‐4(1H)‐one 4 or its 2‐methylthio derivative 5 with hydrazonoyl halides 6 in dioxane in the presence of triethylamine under reflux has followed heterocyclization reaction to yield pyrido[3″,2″:4′,5′]‐thieno[3′,2′:4,5]pyrimido[2,1‐c][1,2,4,5]tetrazin‐6(4H)‐ones 9 . On the other hand, reaction of compound 4 with hydrazonoyl halides 6 in sodium ethoxide at room temperature led to formation of hydrazonothioate compounds 10 . The latter on treatment with glacial acetic acid produced tetracyclic compounds, namely 2‐arylhydrazonopyrido[3″,2″:4′,5′]thieno [3′,2′:4,5]pyrimido[2,1‐b][1,3,4]thiadiazinones 11 . An alternative method was carried out to prove the structure of product 11 . The mechanism of the reaction under study was proposed and the products were screened for their biological activity.  相似文献   

20.
Foreword     
Abstract

The crystal structure of the dinucleating 2,2′:6′,2″-terpyridine ligand 6′,6″-bis(2-pyridyl)-2,2′:4′,4″:2″,2?-quaterpyridine (btpy) has been determined and the two metal-binding tpy domains shown to be essentially planar and co-planar (P 1, a = 6.304(2), b = 8.208(2), c = 11.535(3) Å, α = 97.42(2), β = 104.25(2), γ = 96.23(2)°, Z = 1, d c = 1.36 g cm?3, 2214 unique observed reflections with I > 1.5[sgrave] (I), R = 0.0583); a methodology involving sequential reaction with non-labile and labile metal centres allows the specific assembly of heterometallic supramolecular oligomers such as [(Xtpy)Ru(btpy)M(btpy)Ru(Ytpy)]n+ (M = cobalt(II), cobalt(III) or iron).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号