首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear differential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. T. Belytschko et al. (1996). Its range of application is not confined to elliptic problems. However, the application to the boundary value problem for an elliptic operator, connected with an integral equation, is given as an example. Although the method has been used for special cases for about ten years, cf. E.J. Kansa (1990), there are no error bounds known. We put the main emphasis on detailed proofs of such error bounds, following the general outline described in C. Franke and R. Schaback (preprint). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
In this paper, the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and non-local boundary conditions is considered. The approximate solution is found using the radial basis functions collocation method. There are some difficulties in computing the solution of the time dependent partial differential equations using radial basis functions. If time and space are discretized using radial basis functions, the resulted coefficient matrix will be very ill-conditioned and so the corresponding linear system cannot be solved easily. As an alternative method for solution, we can use finite-difference methods for discretization of time and radial basis functions for discretization of space. Although this method is easy to use but an accurate solution cannot be provided. In this work an efficient collocation method is proposed for solving non-local parabolic partial differential equations using radial basis functions. Numerical results are presented and are compared with some existing methods.  相似文献   

3.
In this paper, the problem of a nonlinear beam equation involving an integral term of the deformation energy, which is unknown before the solution, under different boundary conditions with simply supported, 2‐end fixed, and cantilevered is investigated. We transform the governing equation into an integral equation and then solve it by using the sinusoidal functions, which are chosen both as the test functions and the bases of numerical solution. Because of the orthogonality of the sinusoidal functions, we can find the expansion coefficients of the numerical solution that are given in closed form by using the Drazin inversion formula. Furthermore, we introduce the concept of fourth‐order and fifth‐order boundary functions in the solution bases, which can greatly raise the accuracy over 4 orders than that using the partial boundary functions. The iterative algorithms converge very fast to find the highly accurate numerical solutions of the nonlinear beam equation, which are confirmed by 6 numerical examples.  相似文献   

4.
In this paper, the problem of solving the two-dimensional diffusion equation subject to a non-local condition involving a double integral in a rectangular region is considered. The solution of this type of problems are complicated. Therefore, a simple meshless method using the radial basis functions is constructed for the non-local boundary value problem with Neumann’s boundary conditions. Numerical examples are included to demonstrate the reliability and efficiency of this method. Also Ne and root mean square errors are obtained to show the convergence of the method.  相似文献   

5.
In this paper, we consider an initial‐boundary value problem for a parabolic equation with nonlinear boundary conditions. The solution to the problem can be expressed as a convolution integral of a Green's function and two unknown functions. We change the problem to a system of two nonlinear Volterra integral equations of convolution type. By using an explicit procedure on the basis of Sinc‐function properties, the resulting integral equations are replaced by a system of nonlinear algebraic equations, whose solution yields an accurate approximate solution to the parabolic problem. Some examples are considered to illustrate the ability of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The Cauchy kernel is one of the two significant tools for solving the Riemann boundary value problem for analytic functions. For poly-domains, the Cauchy kernel is modified in such a way that it corresponds to a certain symmetry of the boundary values of holomorphic functions in poly-domains. This symmetry is lost if the classical counterpart of the one-dimensional form of the Cauchy kernel is applied. It is also decisive for the establishment of connection between the Riemann–Hilbert problem and the Riemann problem. Thus, not only the Schwarz problem for holomorphic functions in poly-domains is solved, but also the basis is established for solving some other problems. The boundary values of functions, holomorphic in poly-domains, are classified in the Wiener algebra. The general integral representation formulas for these functions, the solvability conditions and the solutions of the corresponding Schwarz problems are given explicitly. A necessary and sufficient condition for the boundary values of a holomorphic function for arbitrary poly-domains is given. At the end, well-posed formulations of the torus-related problems are considered.  相似文献   

7.
In this paper we introduce an alternative way of defining the curvilinear Cauchy integral over non-rectifiable curves in the case of complex functions of one complex variable. Especially the jump behavior on the boundary is considered. As an application, solvability conditions of the Riemann boundary value problem are derived on very weak conditions to the boundary. Besides the complex case the consideration can be extended to the theory of Douglis algebra valued functions.  相似文献   

8.
In this paper the problem of optimal control of a nonlinear ODE system with given boundary conditions and the integral restriction on control is considered. With the help of the theory of exact penalty functions the original problem is reduced to the problem of unconstrained minimization of a nonsmooth functional. The necessary minimum conditions in terms of hypodifferentials are found. A class of problems for which these conditions are also sufficient is distinguished. On the basis of these conditions the hypodifferential descent method is applied to the considered problem. Under some additional assumptions the hypodifferential descent method converges in a certain sense.  相似文献   

9.
本文应用广义函数的Fourier积分变换,导出了双参数地基上Reissner板弯曲问题的两个基本解·在此基础上,从虚功原理出发,依据胡海昌导出的Reissner板弯曲理论,推导出适用于任意形状、任意荷载、任意边界条件情形的三个边界积分方程,为边界元法在这一问题中的应用提供了理论基础·文中给出了固支、简支、自由三类边界的算例,并与解析解比较,均得到满意的结果·  相似文献   

10.
Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second‐order parabolic equation, particularly to heat conduction equation. We will deal here with new type of nonlocal boundary value problem that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one‐dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of this article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
In this paper, epsilon and Ritz methods are applied for solving a general class of fractional constrained optimization problems. The goal is to minimize a functional subject to a number of constraints. The functional and constraints can have multiple dependent variables, multiorder fractional derivatives, and a group of initial and boundary conditions. The fractional derivative in the problem is in the Caputo sense. The constrained optimization problems include isoperimetric fractional variational problems (IFVPs) and fractional optimal control problems (FOCPs). In the presented approach, first by implementing epsilon method, we transform the given constrained optimization problem into an unconstrained problem, then by applying Ritz method and polynomial basis functions, we reduce the optimization problem to the problem of optimizing a real value function. The choice of polynomial basis functions provides the method with such a flexibility that initial and boundary conditions can be easily imposed. The convergence of the method is analytically studied and some illustrative examples including IFVPs and FOCPs are presented to demonstrate validity and applicability of the new technique.  相似文献   

12.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

13.
主要讨论了四元数空间中正则函数与非齐次n阶方程(■~n F)/(■z~n)=f在超球上的Dirichlet问题和双圆柱上具有任意整数指标的Riemann-Hilbert问题,给出了可解条件和解的积分表示式.  相似文献   

14.
Consider a time‐harmonic electromagnetic plane wave incident on a cavity in a ground plane. The physical process is modelled by Maxwell's equations. In this paper, integral representations of the solutions to the model problem in both fundamental polarizations are derived and studied. Existence and uniqueness of the solutions for the integral equations are established. The integral equations approach forms a basis for numerical solution of the model problem. In particular, for each fundamental polarization, an integral formulation with Gårding‐type estimates is derived. These formulations provide a basis for variational boundary element methods for solving the cavity problem. The Gårding‐type estimates imply convergence results for conforming boundary element methods. Copyright © 2000 John Wiley & Sons, Ltd  相似文献   

15.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

16.
In this paper, the exact forms of integrals in the meshless local boundary integral equation method are derived and implemented for elastostatic problems. A weak form for a set of governing equations with a unit test function or polynomial test functions is transformed into local integral equations. Each node has its own support domain and is surrounded by a local integral domain with different shapes of boundaries. The meshless approximation based on the radial basis function (RBF) is employed for the implementation of displacements. A completed set of closed forms of the local boundary integrals are obtained. As there are no numerical integrations to be carried out the computational time is significantly reduced. Three examples are presented to demonstrate the application of this approach in solid mechanics.  相似文献   

17.
Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In this paper, the problem of solving the one-dimensional wave equation subject to given initial and non-local boundary conditions is considered. These non-local conditions arise mainly when the data on the boundary cannot be measured directly. Several finite difference methods with low order have been proposed in other papers for the numerical solution of this one dimensional non-classic boundary value problem. Here, we derive a new family of efficient three-level algorithms with higher order to solve the wave equation and also use a Simpson formula with higher order to approximate the integral conditions. Additionally, the fourth-order formula is also adapted to nonlinear equations, in particular to the well-known nonlinear Klein–Gordon equations which many physical problems can be modeled with. Numerical results are presented and are compared with some existing methods showing the efficiency of the new algorithms.  相似文献   

18.
Some mathematical models of applied problems lead to the need of solving boundary value problems with a fractional power of an elliptic operator. In a number of works, approximations of such a nonlocal operator are constructed on the basis of an integral representation with a singular integrand. In the present article, new integral representations are proposed for operators with fractional powers. Approximations are based on the classical quadrature formulas. The results of numerical experiments on the accuracy of quadrature formulas are presented. The proposed approximations are used for numerical solving a model two‐dimensional boundary value problem for fractional diffusion.  相似文献   

19.
This paper deals with the singularly perturbed boundary value problem for a linear second-order delay differential equation. For the numerical solution of this problem, we use an exponentially fitted difference scheme on a uniform mesh which is accomplished by the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with weight and remainder term in integral form. It is shown that one gets first order convergence in the discrete maximum norm, independently of the perturbation parameter. Numerical results are presented which illustrate the theoretical results.  相似文献   

20.
利用复变方法和解析函数边值问题的基本理论,研究一类复合材料焊接线上出现裂纹的平面弹性基本问题,笔者通过适当的函数分解和积分变换,将寻找复应力函数的问题转化为求解一正而型奇异积分方程,并借助积分方程理论给出了方程的求解方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号