首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

2.
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond.  相似文献   

3.
4.
The 100 K structures of two salts, namely 2‐amino‐1H‐benzimidazolium 3‐phenylpropynoate, C7H8N3+·C9H5O2, (I), and 2‐amino‐1H‐benzimidazolium oct‐2‐ynoate, C7H8N3+·C8H11O2, (II), both have monoclinic symmetry (space group P21/c) and display N—H...O hydrogen bonding. Both structures show packing with corrugated sheets of hydrogen‐bonded molecules lying parallel to the [001] direction. Two hydrogen‐bonded ring motifs can be identified and described with graph sets R22(8) and R44(16), respectively, in both (I) and (II). Computational chemistry calculations performed on both compounds show that the hydrogen‐bonded ion pairs are more energetically favourable in the crystal structure than their hydrogen–bonded neutral molecule counterparts.  相似文献   

5.
In the four compounds of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxycyclohexa‐2,5‐diene‐1,4‐dione) with pyrrolidin‐2‐one and piperidin‐2‐one, namely, chloranilic acid–pyrrolidin‐2‐one (1/1), C6H2Cl2O4·C4H7NO, (I), chloranilic acid–pyrrolidin‐2‐one (1/2), C6H2Cl2O4·2C4H7NO, (II), chloranilic acid–piperidin‐2‐one (1/1), C6H2Cl2O4·C5H9NO, (III), and chloranilic acid–piperidin‐2‐one (1/2), C6H2Cl2O4·2C5H9NO, (IV), the shortest interactions between the two components are O—H...O hydrogen bonds, which act as the primary intermolecular interaction in the crystal structures. In (II), (III) and (IV), the chloranilic acid molecules lie about inversion centres. For (III), this necessitates the presence of two independent acid molecules. In (I), there are two formula units in the asymmetric unit. The O...O distances are 2.4728 (11) and 2.4978 (11) Å in (I), 2.5845 (11) Å in (II), 2.6223 (11) and 2.5909 (10) Å in (III), and 2.4484 (10) Å in (IV). In the hydrogen bond of (IV), the H atom is disordered over two positions with site occupancies of 0.44 (3) and 0.56 (3). This indicates that proton transfer between the acid and base has partly taken place to form ion pairs. In (I) and (II), N—H...O hydrogen bonds, the secondary intermolecular interactions, connect the pyrrolidin‐2‐one molecules into a dimer, while in (III) and (IV) these hydrogen bonds link the acid and base to afford three‐ and two‐dimensional hydrogen‐bonded networks, respectively.  相似文献   

6.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

7.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

8.
In 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium (acetoguanaminium) hydrogen phthalate, C4H8N5+·C8H5O4, (I), acetoguanaminium hydrogen maleate, C4H8N5+·C4H3O4, (II), and acetoguanaminium 3‐hydroxypicolinate monohydrate, C4H8N5+·C6H4NO3·H2O, (III), the acetoguanaminium cations interact with the carboxylate groups of the corresponding anions via a pair of nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. In (II) and (III), N—H...N base‐pairing is observed, while there is none in (I). In (II), a series of fused R32(8), R22(8) and R32(8) hydrogen‐bonded rings plus fused R22(8), R62(12) and R22(8) ring motifs occur alternately, aggregating into a supramolecular ladder‐like arrangement. In (III), R22(8) motifs occur on either side of a further ring formed by pairs of N—H...O hydrogen bonds, forming an array of three fused hydrogen‐bonded rings. In (I) and (II), the anions form a typical intramolecular O—H...O hydrogen bond with graph set S(7), whereas in (III) an intramolecular hydrogen bond with graph set S(6) is formed.  相似文献   

9.
The 1:1 proton‐transfer compounds of l ‐tartaric acid with 3‐aminopyridine [3‐aminopyridinium hydrogen (2R,3R)‐tartrate dihydrate, C5H7N2+·C4H5O6·2H2O, (I)], pyridine‐3‐carboxylic acid (nicotinic acid) [anhydrous 3‐carboxypyridinium hydrogen (2R,3R)‐tartrate, C6H6NO2+·C4H5O6, (II)] and pyridine‐2‐carboxylic acid [2‐carboxypyridinium hydrogen (2R,3R)‐tartrate monohydrate, C6H6NO2+·C4H5O6·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium–carboxyl N+—H...O hydrogen‐bonding interaction, four‐centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N—H...O association in (III) is with a water O‐atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head‐to‐tail C(7) hydrogen‐bonded chain substructures commonly associated with 1:1 proton‐transfer hydrogen tartrate salts. These chains are extended into two‐dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three‐dimensional hydrogen‐bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O‐atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter‐sheet association. This series of heteroaromatic Lewis base–hydrogen l ‐tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two‐dimensional hydrogen‐bonded hydrogen tartrate or hydrogen tartrate–water sheet substructures which are expanded into three‐dimensional frameworks via peripheral cation bifunctional substituent‐group crosslinking interactions.  相似文献   

10.
The title complex, 2C5H7N2+·C4H2O42−·C4H4O4, contains cyclic eight‐membered hydrogen‐bonded rings involving 2‐­aminopyridinium and fumarate ions. The fumaric acid mol­ecules and fumarate ions lie on inversion centers and are linked into zigzag chains by O—H⋯O hydrogen bonds. The dihedral angle between the pyridinium ring and the hydrogen‐bonded fumarate ion is 7.60 (4)°. The fumarate anion is linked to the pyridinium cations by intermolecular N—H⋯O hydrogen bonds. The heterocycle is fully protonated, thus enabling amine–imine tautomerization.  相似文献   

11.
The molecules of N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐methoxybenzyl)acetamide, C23H26ClN3O2, are linked into a chain of edge‐fused centrosymmetric rings by a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond. In N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐chlorobenzyl)acetamide, C22H23Cl2N3O, a combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds, which utilize different aryl rings as the acceptors, link the molecules into sheets. The molecules of S‐[N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐N‐(4‐methylbenzyl)carbamoyl]methyl O‐ethyl carbonodithioate, C26H31N3O2S2, are also linked into sheets, now by a combination of two C—H...O hydrogen bonds, both of which utilize the amide O atom as the acceptor, and two C—H...π(arene) hydrogen bonds, which utilize different aryl groups as the acceptors.  相似文献   

12.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

13.
In the structure of the 1:1 proton‐transfer compound from the reaction of l ‐tartaric acid with the azo‐dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely 4‐(phenyldiazenyl)anilinium (2R,3R)‐3‐carboxy‐2,3‐dihydroxypropanoate, C12H12N3+·C4H5O6, the asymmetric unit contains two independent 4‐(phenyldiazenyl)anilinium cations and two hydrogen l ‐tartrate anions. The structure is unusual in that all four phenyl rings of the two cations have identical rotational disorder with equal occupancy of the conformations. The two hydrogen l ‐tartrate anions form independent but similar chains through head‐to‐tail carboxyl–carboxylate O—H...O hydrogen bonds [graph set C(7)], which are then extended into a two‐dimensional hydrogen‐bonded sheet structure through hydroxy O—H...O hydrogen‐bonded links. The anilinium groups of the 4‐(phenyldiazenyl)anilinium cations are incorporated into the sheets and also provide internal hydrogen‐bonded extensions, while their aromatic tails are layered in the structure without significant association except for weak π–π interactions [minimum ring centroid separation = 3.844 (3) Å]. The hydrogen l ‐tartrate residues of both anions exhibit the common short intramolecular hydroxy–carboxylate O—H...O hydogen bonds. This work provides a solution to the unusual disorder problem inherent in the structure of this salt, as well as giving another example of the utility of the hydrogen tartrate anion in the generation of sheet substructures in molecular assembly processes.  相似文献   

14.
The structures of the anhydrous 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2‐aminopyrimidine, 3‐(aminocarbonyl)pyridine (nicotinamide) and 4‐(aminocarbonyl)pyridine (isonicotinamide), namely 2‐aminopyrimidinium 2‐carboxy‐4,5‐dichlorobenzoate, C4H6N3+·C8H3Cl2O4, (I), 3‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H7N2O+·C8H3Cl2O4, (II), and the unusual salt adduct 4‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate–methyl 2‐carboxy‐4,5‐dichlorobenzoate (1/1), C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4, (III), have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen‐bonded cyclic bis(cation–anion) units having both R22(8) and R12(4) N—H...O interactions. In (II), the primary N—H...O‐linked cation–anion units are extended into a two‐dimensional sheet structure via amide–carboxyl and amide–carbonyl N—H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self‐synthesized methyl monoester of the acid as an adduct molecule, giving one‐dimensional hydrogen‐bonded chains. In all three structures, the hydrogen phthalate anions are essentially planar with short intramolecular carboxyl–carboxylate O—H...O hydrogen bonds [O...O = 2.393 (8)–2.410 (2) Å]. This work provides examples of low‐dimensional 1:1 hydrogen‐bonded DCPA structure types, and includes the first example of a discrete cyclic `heterotetramer.' This low dimensionality in the structures of the 1:1 aromatic Lewis base salts of the parent acid is generally associated with the planar DCPA anion species.  相似文献   

15.
4‐Hydroxypyridine and terephthalic acid cocrystallize as a hydrate, 4‐pyridone–terephthalic acid–water (2/1/2), 2C5H5NO·C8H6O4·2H2O, from a methanol–water solution. The molecules form a two‐dimensional hydrogen‐bonded network resulting in sheets of hydrogen‐bonded molecules that lie parallel to the (10) plane. In contrast, 3‐hydroxypyridine and terephthalic acid form the salt bis(3‐hydroxypyridinium) terephthalate, 2C5H6NO+·C8H4O42−, giving rise to two‐dimensional hydrogen‐bonded sheets extending through the lattice parallel to the (10) plane.  相似文献   

16.
The title compounds, namely (2Z)‐1‐(4‐bromophenyl)‐2‐(pyrrolidin‐2‐ylidene)ethanone, C12H12BrNO, (I), (2Z)‐1‐(4‐bromophenyl)‐2‐(piperidin‐2‐ylidene)ethanone, C13H14BrNO, (II), and (2Z)‐2‐(azepan‐2‐ylidene)‐1‐(4‐bromophenyl)ethanone, C14H16BrNO, (III), are characterized by bifurcated intra‐ and intermolecular hydrogen bonding between the secondary amine and carbonyl groups. The former establishes a six‐membered hydrogen‐bonded ring, while the latter leads to the formation of centrosymmetric dimers. Weak C—H...Br interactions link the individual molecules into chains that run along the [011], [101] and [101] directions in (I)–(III), respectively. Additional weak Br...O, C—H...π and C—H...O interactions further stabilize the crystal structures.  相似文献   

17.
Cocrystallization of 1,1′‐(p‐phenylene)dipyridin‐4(1H)‐one (4,4′‐dpy) and terephthalic acid (tpa) affords the hydrogen‐bonded 1:1 title complex, C16H12N2O2·C8H6O4. Both mol­ecules are symmetrically disposed about independent symmetry centers. Strong O—H⋯O hydrogen bonds between tpa carboxyl groups and 4,4′‐dpy carbonyl groups produce one‐dimensional zigzag infinite chains. Each chain is linked to four surrounding chains via weak C—H⋯O inter­actions, resulting in a three‐dimensional mol­ecular framework.  相似文献   

18.
The structures of the anhydrous 1:1 proton‐transfer compounds of the dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely isomeric 4‐(phenyldiazenyl)anilinium 2‐carboxy‐6‐nitrobenzoate, C12H12N3+·C8H4NO6, (I), and 4‐(phenyldiazenyl)anilinium 2‐carboxy‐4‐nitrobenzoate, C12H12N3+·C8H4NO6, (II), and 4‐(phenyldiazenyl)anilinium 3‐carboxy‐5‐nitrobenzoate monohydrate, C12H12N3+·C8H4NO6·H2O, (III), have been determined at 130 K. In (I) the cation has longitudinal rotational disorder. All three compounds have substructures comprising backbones formed through strong head‐to‐tail carboxyl–carboxylate hydrogen‐bond interactions [graph set C(7) in (I) and (II), and C(8) in (III)]. Two‐dimensional sheet structures are formed in all three compounds by the incorporation of the 4‐(phenyldiazenyl)anilinium cations into the substructures, including, in the cases of (I) and (II), infinite H—N—H to carboxylate O—C—O group interactions [graph set C(6)], and in the case of (III), bridging through the water molecule of solvation. The peripheral alternating aromatic ring residues of both cations and anions give only weakly π‐interactive step features which lie between the sheets.  相似文献   

19.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

20.
Diethyl 4‐(2,5‐di­methoxy­phenyl)‐2,6‐di­methyl‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C21H27NO6, (I), diethyl 4‐(3,4‐di­methoxy­phenyl)‐2,6‐di­methyl‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C21H27NO6, (II), and diethyl 2,6‐di­methyl‐4‐(3,4,5‐tri­methoxy­phenyl)‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C22H29NO7, (III), crystallize with hydrogen‐bonding networks involving the H atom bonded to the N atom of the 1,4‐di­hydro­pyridine ring and carbonyl O atoms in (I) and (II). Unusually, (III) shows O atoms of methoxy groups serving as hydrogen‐bond acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号