首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA40) and N,N‐dicyclohexylterephthalamide (NABW) are high effective nucleating agents for inducing the formation of α‐isotactic polypropylene (α‐iPP) and β‐iPP, respectively. The isothermal crystallization kinetics of iPP nucleated with nucleating agents NABW, NA40/NABW (weight ratio of NA40 to NABW is 1:1) and NA40 were investigated by differential scanning calorimetry (DSC) and Avrami equation was adopted to analyze the experimental data. The results show that the addition of NABW, NA40/NABW and NA40 can shorten crystallization half‐time (t1/2) and increase crystallization rate of iPP greatly. In these three nucleating agents, the α nucleating agent NA40 can shorten t1/2 of iPP by the largest extent, which indicates that it has the best nucleation effect. While iPP nucleated with NA40/NABW compounding nucleating agents has shorter t1/2 than iPP nucleated with NABW. The Avrami exponents of iPP and nucleated iPP are close to 3.0, which indicates that the addition of nucleating agents doesn't change the crystallization growth patterns of iPP under isothermal conditions and the crystal growth is heterogeneous three‐dimensional spherulitic growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 590–596, 2007  相似文献   

2.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

3.
Nucleation characteristics of isotactic polypropylene (iPP) nucleated by the α/β compounded nucleating agents (NAs) were investigated by wide‐angle X‐ray scattering, differential scanning calorimetry and mechanical testing. The results showed that the nucleation effect of the α/β compounded NAs depends on not only nucleation efficiency (NE) of individual β and α NAs and their ratios but also the processing conditions, especially the cooling rates. The nucleating characteristics of the α/β compounded NAs can be illustrated by competitive nucleation. The NA with high NE played a leading role during iPP crystallization even at a low weight ratio and at different cooling rates. The stiffness and toughness of iPP can be simultaneously improved by using suitable compositions at the appropriate ratios. Finally, the nonisothermal crystallization kinetics of iPP nucleated with the α/β compounded NAs was described by Caze method and the crystallization activation energy of nucleated iPP was calculated by Kissinger equation. The result indicated that the crystal growth pattern of nucleated iPP was heterogeneous nucleation followed by three‐dimension spherical growth. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 653–665, 2010  相似文献   

4.
This article reports crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative (TMB‐5) as β‐form nucleating agent. The effects of nucleating agent concentration, thermal history and assemble morphology of nucleating agent on the crystallization behaviors of iPP were studied by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The results indicated that the TMB‐5 concentration should surpass a threshold value to get products rich in β‐iPP. The diverse morphologies of TMB‐5 are determined by nucleating agent concentration and crystallization condition. At higher concentrations, the recrystallized TMB‐5 aggregates into needle‐like structure, which induces mixed polymorphic phases on the lateral surface and large amount of β modification around the tip. High β nucleation efficiency was obtained at the lowest studied crystallization temperature, which is desirable for real molding process. TMB‐5 prefers to recrystallize from the melt at higher concentration and lower crystallization temperature. The difference in solubility, pertinent to concentration and crystallization temperature, determined the distinct crystallization behaviors of iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1725–1733, 2008  相似文献   

5.
The selectivities of different β‐nucleating agents might be quite different from each other, which is important in determining the crystallization and properties of the obtained β‐isotactic polypropylene (β‐iPP). However, the relationship between molecular structure and dynamic crystallization behavior of β‐iPP nucleated by dual‐selective β‐nucleating agent (DS‐β‐NA) is still not clear. In this study, the dynamic crystallization and melting behavior of two β‐iPP with nearly same average isotacticity but different stereo‐defect distribution, nucleated by a DS‐β‐NA (N,N′‐dicyclohexyl‐2,6‐naphthalenedicarboxamide; trade name TMB‐5), were studied by differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electronic microscopy. The results indicated that in the presence of TMB‐5, the dynamic crystallization and melting behavior of the samples are quite different because the joint effects of the dual selectivity of TMB‐5 and stereo‐defect distribution of the iPP under different cooling rates. Two important roles were observed: (i) slow cooling rate favors the formation of high β‐fraction; and (ii) high crystallization temperature favors the crystallization of α‐phase accelerated by TMB‐5. Generally, the dual selectivity of the DS‐β‐NA, the stereo‐defect distribution of iPP, and the cooling rate were important factors in determining the formation of β‐crystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Aiming at further investigating the combination effect of concentration of β‐nucleating agent (β‐NA) and stereo‐defect distribution on the crystallization behavior of β‐nucleated isotactic polypropylene (β‐iPP), in this study, the crystallization behavior and polymorphic morphology of twoβ‐iPP resins with nearly same average isotacticity (PP‐A and PP‐B) but different uniformities of stereo‐defect distribution were investigated by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM). The results of DSC and WAXD showed that the addition of TMB‐5 increases the crystallization temperature and decreases the spherulite sizes of both PP‐A and PP‐B, and reduces their crystallization energy barriers as well; however, the polymorphic behaviors of PP‐A and PP‐B exhibit different dependence on the TMB‐5 concentration. For PP‐A with less uniform distribution of stereo‐defects, β‐phase can be observed only when the TMB‐5 concentration is no less than 0.1 wt.%, while for PP‐B with more uniform stereo‐defect distribution, addition of 0.01 wt.% TMB‐5 can induce the formation of β‐phase. Moreover, the analysis of POM indicated that the crystalline morphologies of both PP‐A and PP‐B change greatly with the TMB‐5 concentration, and the variation features of PP‐A and PP‐B are quite different from each other. PP‐B with more uniform stereo‐defect distribution was more favorable for the formation of large amount of β‐phase in the presence of wide concentration range of TMB‐5. The different polymorphic behaviors and their different dependences on the β‐NA concentration were related to the different uniformities of stereo‐defect distribution of the samples, since the distribution of stereo‐defects could restrain the regular insertion of molecular chains during crystallization and thus determine the tendency the α‐phase crystallization of the sample. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Compounds of isotactic polypropylene (iPP) and β‐nucleating agent were used to investigate the relationship between the development of β phase and molecular weight in iPP under quiescent crystallization conditions by using wide angle X‐ray diffraction and differential scanning calorimetry techniques. In all cases, the dependency of the formation of β phase in iPP on molecular weight of iPP at a defined crystallization temperature range was found. The iPP with high molecular weight possessed a wide range of crystallization temperature in inducing rich β phase. However, poor or even no β phase was obtained for the samples with low molecular weight in the same range. In addition, an upper critical crystallization temperature of producing dominant β phase was found at 125 °C. Beyond this temperature, a phenomenon of prevailing α phase became obvious. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1301–1308  相似文献   

8.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

9.
In this work, the nonisothermal crystallization and subsequent melting behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been studied. α‐phase NA 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The results show that the nonisothermal crystallization behaviors and crystalline structures of PP with compounded NAs are dependent on the composition of NAs. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency (NE) of TMB‐5 is much higher than that of DMDBS and PP crystallizes mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher NE than 0.2 wt % TMB5, and α‐phase is the main crystalline structure. The cooling rate is proved to be very important in controlling the nonisothermal crystallization behavior and the final crystalline structure of nucleated PP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1853–1867, 2008  相似文献   

10.
The nonisothermal crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative TMB‐5 as β‐form nucleating agent has been investigated by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The feature of crystallite morphology depends on concentration and thermal conditions. At low concentrations, TMB‐5 molecules aggregate into fibril structures and presented blunt exothermic peak with a shoulder at high temperature. The surface of these fibrils host active sites tailored for the nucleation of β‐iPP, represented by clusters of microcrystallites. With increasing concentration, αβ‐transcrystalline layer develops on the lateral surface of needle‐shaped TMB‐5. Enhanced multiple endotherms indicate the ensuing crystals are less perfect and easily transformed into more stable forms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 314–325, 2009  相似文献   

11.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

12.
The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene (iPP) were analyzed. It is found that the crystallization temperatures of nucleated iPP were increased by above 11.0°C and the relative contents of β‐crystals (Kβ ) in iPP reached above 0.40 after addition of compound nucleating agents. The Kβ values depend on cooling rate, crystallization temperature in isothermal crystallization, and the difference between the crystallization temperatures of iPP nucleated by two individual nucleating agents. The nonisothermal crystallization kinetics were studied by Caze method and Mo method, respectively. The effective activation energy was calculated by the Friedman's method. The results illustrate that the half crystallization time was shortened and the crystallization rate was increased obviously after addition of nucleating agents, and the effective activation energy was increased with the relative crystallinity.  相似文献   

13.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

14.
Nucleating agents with an ≈6.5 Å lattice parameter induced the α phase of isotactic polypropylene (iPP, α‐iPP). A 6.5 Å periodicity is also involved in the nucleating agents for the β phase of iPP (β‐iPP). The similarity in substrate periodicities suggests that some nucleating agents may induce either the α or β phase under different crystallization conditions. 4‐Fluorobenzoic acid, dicyclohexylterephthalamide, and γ‐quinacridone (the latter two are known as β‐iPP nucleators) were tested over a wide range of crystallization temperatures [up to crystallization temperature (Tc) > 145 °C]. The two former nucleating agents induce exclusively α‐iPP and β‐iPP, respectively. γ‐Quinacridone on the contrary is a versatile agent with respect to the crystal phase generated. More specifically, the same crystal face of γ‐quinacridone induces either β‐iPP or α‐iPP when Tc is below or above ≈140 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2504–2515, 2002  相似文献   

15.
Previous work showed that annealing induced the great improvement of fracture resistance of β‐iPP, relating to the decreased number of chain segments in the amorphous region. To further prove the rationality of this observation, in this work, the ethylene‐octene copolymer (POE) toughened isotactic polypropylene (iPP) blends with or without β‐phase nucleating agent (β‐NA) were adopted and the changes of microstructure and fracture resistance during the annealing process were further investigated comparatively. The results showed that, whether for the α‐phase crystalline structure (non‐nucleated) or for the β‐phase crystalline structure (β‐NA nucleated) in iPP matrix, annealing can induce the dramatic improvement of fracture resistance at a certain annealing temperature (120–140 °C for β‐NA nucleated blends whereas 120–150 °C for non‐nucleated blends). Especially, non‐nucleated blends exhibit more apparent variations in fracture resistance compared with β‐NA nucleated blends during the annealing process. The phase morphology of elastomer, supermolecular structure of matrix, the crystalline structure including the degree of crystallinity and the relative content of β‐phase, and the relaxation of chain segments were investigated to explore the toughening mechanism of the samples after being annealed. It was proposed that, even if the content of elastomer is very few, the excellent fracture resistance can be easily achieved through adjusting the numbers of chain segments in the amorphous phase by annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
As part of a continuous effort to develop high performance isotactic polypropylene (iPP) based on β‐form crystalline and morphological change induced by rare earth nucleator (WBG), various WBG contents (from 0.025 to 1.0 wt%) were adopted to prepare β‐nucleated iPP at a fixed final molten temperature (240°C) in this study. The crystallinity, polymorphic composition, and crystalline morphology were inspected in detail by a series of crystallographic characterizations, including calorimeter, X‐ray diffraction, polarized light microscopy (PLM), and electron microscopy. Furthermore, the self‐organization and re‐crystallization behavior of β‐nucleating agent occurred during cooling was characterized by rheometry. Finally, the dependence of mechanical properties, including tensile strength, elongation at break, and impact strength, on WBG content was discussed based on the variations in β‐form content and crystalline morphology. Interestingly, it is found that while the WBG content is below 0.1 wt%, the toughness of β‐nucleated iPP increases with increase in WBG content due to additional β‐form content; as the WBG content is in range of 0.1–0.5 wt%, the toughness increases at a lower rate with increase in WBG content due to β‐crystalline morphological change. However, a decrease in toughness is observed while nucleator content is above 0.5 wt% as WBG remains undissolved in iPP upon the adopted processing conditions. The result of this study provides valuable information for potential industrial applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, α-phase nucleating agent (NA) 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS), β-phase rare earth NA (WBG), and their compound NAs were introduced into isotactic polypropylene (iPP) matrix, respectively. Crystallization kinetics and subsequent melting behavior of the nucleated iPPs were comparatively studied by differential scanning calorimetry (DSC) under both isothermal and nonisothermal conditions. For the isothermal crystallization process, it is found that the Avrami model successfully described the crystallization kinetics. The active energy of nonisothermal crystallization of iPP was determined by the Kissinger method and showed that the addition of nucleating agents increased the activation energy. Melting behavior and crystalline structure of the nucleated iPPs are dependent on the nature of NAs and crystallization conditions. Higher proportion of β-phase can be obtained at higher content of β-nucleating agent and lower crystallization temperature or lower cooling rate.  相似文献   

18.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

19.
In this work, a novel nucleating agent (NA) based on substituted‐aryl phosphate salts was introduced into poly(L‐Lactide) (PLLA). The nonisothermal and isothermal crystallization behaviors of nucleated PLLA samples were investigated through differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and polarized optical microscope (POM). Furthermore, the effect of annealing treatment on the cold crystallization behaviors of nucleated samples was also investigated. The results show that the crystallization of PLLA, whether for the melt crystallization (including nonisothermal and isothermal crystallization process) or for the cold crystallization (including the cold crystallization occurring during the DSC heating process and during the annealing process), is greatly dependent upon the content of NA. At relatively lower NA content (≤0.1 wt%), the nucleation effect of NA is inconspicuous, however, at higher NA content (≥0.2 wt%), it exhibits great nucleation effect for the crystallization of PLLA. Further results show that the double endothermic peak of PLLA depends on the temperature applied for the crystallization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Compared with the most stable crystalline form of isotactic polypropylene (α‐iPP), β‐iPP shows superior impact strength and high temperature performance, though the mechanism of how the frustrated structure of β‐iPP is formed still remains unclear. In present work, the single crystal structure of a traditional β‐iPP nucleating agent, N,N′‐dicyclohexylterephthalamide (DCHT), was obtained for the first time and correlated with the epitaxial crystallization of β‐iPP on the surface of DCHT crystal. The combination of synchrotron radiation X‐ray microdiffraction and molecular chain packing model confirmed that a two dimensional match of chain‐axis and inter‐chain direction coexists between β‐iPP (110) plane and DCHT (001) plane. It was further found that an epitaxial model is helpful to understand the formation of the frustrated structure of 31 helices packing in β‐iPP. The molecular mechanics computation showed that as the (001) plane of DCHT is fixed, the packing mode of β‐iPP (110) plane on the substrate surface is more stable than that of α‐iPP (010) plane. This work clarifies the epitaxial crystallization mechanism of β‐iPP on DCHT by employing both experimental and computational evidences. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 418–424  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号