首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   

2.
Traditional rubber industries rely heavily on petroleum-based materials, such as carbon black (CB). The present study aims at mitigating the environmental challenges, through partial replacement of CB, while simultaneously consuming an easily accessible agricultural waste. Accordingly, cellulose nanofibre (CNF) was extracted from wheat-straw using chemo-mechanical process, which in-turn was used for fabrication of CNF enabled rubber nanocomposites. Microstructural observation of CNF confirmed nanometric defibrillation of cellulose. A variety of tests were performed on the nanocomposites towards exploring their structure-property correlations, curing-behaviour, thermal degradability and mechanical (static and dynamic) properties. Overall, considerable enhancement in properties such as tensile strength and strain energy density could be realized, owing to synergistic use of CNF and CB in rubber, allowing for replacement of up to 15 phr CB. These were further augmented by significant improvements in dynamic rolling-resistance, traction and stress-softening behaviour. The results were especially significant, considering that the improvements could be achieved without any modification of CNF surface, thereby establishing its potential for development of environment friendly rubber nanocomposites.  相似文献   

3.
Cellulose nanofibres (CNF) with diameter 10–60 nm were isolated from raw banana fibres by steam explosion process. These CNF were used as reinforcing elements in natural rubber (NR) latex along with cross linking agents to prepare nanocomposite films. The effect of CNF loading on the mechanical and dynamic mechanical (DMA) properties of NR/CNF nanocomposite was studied. The morphological, crystallographic and spectroscopic changes were also analyzed. Significant improvement of Young’s modulus and tensile strength was observed as a result of addition of CNF to the rubber matrix especially at higher CNF loading. DMA showed a change in the storage modulus of the rubber matrix upon addition of CNF which proves the reinforcing effect of CNF in the NR latex. A mechanism is suggested for the introduction of the Zn–cellulose complex and its three dimensional network as a result of the reaction between the cellulose and the Zinc metal which is originated during the composite formation.  相似文献   

4.
Reinforcing of cellulose nanofibril (CNF) films by partial dissolution with N-methylmorpholine-N-oxide (NMMO) was investigated. The method investigated is composed of impregnation of CNF film with liquid solution of NMMO followed by dry heat activation. The heat activation of the impregnated film was carried out using a heated calendering nip, which enabled simultaneous heating and compression. The partial dissolution of cellulose by NMMO caused a significant increase in the transparency of CNF film due to the decrease of film porosity and increased surface smoothness. The dry strength of the reinforced film was increased from 122 up to 195 MPa. Furthermore, the wet strength of the reinforced film was up to 70% greater than the dry strength of pure CNF film. The changes in the fibrillar structure were investigated with topographical imaging (SEM and AFM) and spectroscopically using NMR and FTIR. No significant changes in the fibril structure or cellulose morphology were observed. Moreover, the treated film resisted significant water pressure, highlighting CNF film’s permanent water resistance. The partial dissolution process with NMMO was also capable of reinforcing a CNF composite film with macro scale structural elements (lyocell short-cut fibres). The strategy investigated is a robust and fast method to improve the mechanical properties of fibrillary cellulose films, allowing them utilization in applications where improved water resistance and fully cellulosic character are required properties.  相似文献   

5.
Green all-cellulose nanocomposites were fabricated by adding reinforcing cellulose nanofiber (CNF) to a matrix of dissolved cellulose. CNFs were isolated from one dried native hardwood bleached Kraft pulp and office waste recycled deinked copy/printing paper (DIP) by using the TEMPO oxidation method. The cellulose was dissolved by using DIP and DMAc/LiCl solvent without heat treatment and solvent exchange to form a matrix of the all-cellulose nanocomposites. The DIP was not only selected for CNF isolation, but also for the cellulose matrix. The isolated CNFs and the all-cellulose nanocomposites were characterized by atomic force microscopy, thermogravimetry–differential thermal analysis, X-ray diffraction and mechanical tensile testing. The green all-cellulose nanocomposites made without heat treatment offered better thermal stability, crystallinity and mechanical properties than the heat treated ones. CNFs isolated from two resources show similar reinforcement capacity in all-cellulose nanocomposites. All-cellulose nanocomposite fabrication by dissolving cellulose without heat treatment and solvent exchange is a simple way that saves energy and chemicals.  相似文献   

6.
7.

Although cellulose nanomaterials have promising properties and performance in a wide application space, one hinderance to their wide scale industrial application has been associated with their economics of dewatering and drying and the ability to redisperse them back into suspension without introducing agglomerates or lose of yield. The present work investigates the dewatering of aqueous suspensions of cellulose nanofibrils (CNFs) using ultrasound as a potentially low-cost, non-thermal, and scalable alternative to traditional heat-based drying methods such as spray drying. Specifically, we use vibrating mesh transducers to develop a direct-contact mode ultrasonic dewatering platform to remove water from CNF suspensions in a continuous manner. We demonstrate that the degree of dewatering is modulated by the number of transducers, their spatial configuration, and the flow rate of the CNF suspension. Water removal of up to 72 wt.% is achieved, corresponding to a final CNF concentration of 11 wt.% in 30 min using a two-transducer configuration. To evaluate the redispersibility of the dewatered CNF material, we use a microscopic analysis to quantify the morphology of the redispersed CNF suspension. By developing a custom software pipeline to automate image analysis, we compare the histograms of the dimensions of the redispersed dewatered fibrils with the original CNF samples and observe no significant difference, suggesting that no agglomeration is induced due to ultrasonic dewatering. We also perform SEM analysis to evaluate the nanoscale morphology of these fibrils showing a width range of 20 nm–4 um. We estimate that this ultrasound dewatering technique is also energy-efficient, consuming up to 36% less energy than the enthalpy of evaporation per kilogram of water. Together with the inexpensive cost of transducers (<?$1), the potential for scaling up in parallel flow configurations, and excellent redispersion of the dewatered CNFs, our work offers a proof-of-concept of a sustainable CNF dewatering system, that addresses the shortcomings of existing techniques.

  相似文献   

8.
Significant effect of cellulose nanofibers (CNFs) on cure‐induced phase separation in dynamically asymmetric system is reported. An epoxy/polysulfone blends with typical layered structure formation was chosen as the polymer matrix, and morphology evolution and rheological behavior of systems with different nano‐size fiber loadings upon curing reaction were investigated using optical microscopy and rheological measurement. CNF distributed uniformly in the polymer matrix and had good interaction with polymer chains. Curing reaction of epoxy was promoted by CNF, making the system gel and phase separate earlier. Meanwhile, system viscosity was increased with CNF addition, and the movement of polymer chains and component diffusion were constrained, as a result, the structure evolution process was slowed down. The CNF altered the final morphologies, resulting in refined structures with smaller characteristic length scales or even completely change the morphologies from the layered structures to a bicontinuous structure when the CNF concentration reached to a relatively high level. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1357–1366  相似文献   

9.
Although the positive effect that cellulose nanofibers (CNF) can have on paper strength is known, their effect on flocculation during papermaking is not well understood, and most relevant studies have been carried out in presence of only cationic starch. Flocculation is the key to ensuring retention of fibers, fines, and fillers, and furthermore floc properties have a great influence on paper quality. The aim of this research is to study the interactions between CNF and flocculants by assessing the effect of two types of CNF, from eucalyptus and corn, on the flocculation process induced by three different retention systems [a dual system, polyvinylamine (PVA), and cationic starch as reference]. The results showed that CNF interacted with the flocculants in different ways, affecting flocculation efficiency and floc properties. In general, addition of CNF increased floc stability and minimized overdosing effects. Moreover, presence of CNF increased floc size for given PVA dose; therefore, CNF addition could contribute to improve the wet end in the paper machine if combined with the optimal flocculant and dose.  相似文献   

10.
Cellulose nanofibrils (CNF) are renewable bio-based materials with high specific area, which makes them ideal candidates for multiple emerging applications including for instance on-demand drug release. However, in-depth chemical and structural characterization of the CNF surface chemistry is still an open challenge, especially for low weight percentage of functionalization. This currently prevents the development of efficient, cost-effective and reproducible green synthetic routes and thus the widespread development of targeted and responsive drug-delivery CNF carriers. We show in this work how we use dynamic nuclear polarization (DNP) to overcome the sensitivity limitation of conventional solid-state NMR and gain insight into the surface chemistry of drug-functionalized TEMPO-oxidized cellulose nanofibrils. The DNP enhanced-NMR data can report unambiguously on the presence of trace amounts of TEMPO moieties and depolymerized cellulosic units in the starting material, as well as coupling agents on the CNFs surface (used in the heterogeneous reaction). This enables a precise estimation of the drug loading while differentiating adsorption from covalent bonding (∼1 wt% in our case) as opposed to other analytical techniques such as elemental analysis and conductometric titration that can neither detect the presence of coupling agents, nor differentiate unambiguously between adsorption and grafting. The approach, which does not rely on the use of 13C/15N enriched compounds, will be key to further develop efficient surface chemistry routes and has direct implication for the development of drug delivery applications both in terms of safety and dosage.

DNP-enhanced solid-state NMR unravels the surface chemistry of functionalized nanocellulose.  相似文献   

11.
Based on the functional properties of electrospun cellulose nanofibers(CNF), scientists are showing substantial interest to enhance the aesthetic properties. However, the lower color yield has remained a big challenge due to the higher surface area of nanofibers. In this study, we attempted to improve the color yield properties of CNF by the pad-steam dyeing method. Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA) nanofibers. Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized. SEM images revealed smooth morphology with an increase in the average diameter of nanofibers. FTIR results showed no change in the chemical structure after dyeing of CNF. Color fastness results demonstrated excellent ratings for reactive dyes, which indicate good dye fixation properties and no color loss during the washing process. The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF, which can be utilized for functional garments, such as breathable raincoats and disposable face masks.  相似文献   

12.
Nanofibrillated cellulose (NFC) from three agricultural crop (rice straw, corn and rapeseed stalk) residues was isolated with high-yield production using either high pressure homogenisation or a high speed blender. The fibres were extracted from the neat biomass via an NaClO2/acetic acid and alkali pulping process. TEMPO-mediated oxidation pretreatment at pH 7 and 10 was accomplished to facilitate the release of the cellulose microfibrils. The fibrillation yield, transparency degree and morphological characteristics of the ensuing NFC were analysed using the centrifugation method, transmittance measurement and SEM observation. The energy consumption during the disintegration process was also accessed. It was shown that the mode of lignin removal and the fibre pretreatment notably affected the nanofibrillation efficiency and energy demand. A successful production of NFC with yield exceeding 90 %, using a simple Waring blender, was achieved when the NaClO2/acetic acid delignification followed by a TEMPO-NaBr–NaClO oxidation at pH 10 was adopted.  相似文献   

13.
It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.  相似文献   

14.
This study investigates the potential of wood wastes, specifically post-consumer fiberboards, as a new source for cellulose nanocrystals (CNC). This underused resource has currently no commercially viable way to recycle it and so the volumes of fiberboard waste are growing rapidly. A sequential chemical fractionation was used to separate the three main constituents of wood, namely cellulose, hemicelluloses and lignin, and the non-wood components present in fiberboards, such as resins and finishes (e.g. varnishes, paints, plastics, laminates, etc.). Most of the non-cellulosic components and non-wood elements were removed by an alkali treatment followed by bleaching, resulting in a cellulosic fraction which is suitable for the further isolation of CNC by an acid hydrolysis step. The intermediate and final products were characterized by chemical composition, microscopic, spectroscopic and X-ray diffraction methods. The CNC obtained from wood waste are totally devoid of traces of contaminants and possess comparable characteristics and quality to those extracted from virgin wood fibers. The results indicate that fiberboard wastes can be used as promising alternative source for nanocelluloses production.  相似文献   

15.
Lignocellulose nanofibrils (LCNF) were produced from thermo-mechanical pulp (TMP) using a micro-grinder and were characterized with respect to fiber diameter and thermal stability. The initial water content in the TMP affected the defibrillation process and longer grinding time was necessary for the air-dried TMP, resulting in LCNF with higher fibril diameter. As compared to the reference cellulose nanofibrils (CNF) produced through a refining process, LCNF was less thermally stable and started to degrade at a temperature that was 30 °C lower than that of CNF. LCNF obtained from the never-dried TMP was combined with various additives (10 wt%) to produce composite films. The neat LCNF and composite films did not reach the mechanical properties of the neat CNF film that was evaluated as reference. However, the addition of poly(vinyl alcohol) (PVA) at 10 wt% on a dry basis did cause a 46 and 25% increase in tensile strength and elastic modulus, respectively. Other additives including cellulose nanocrystals, bentonite and CNF were also found to increase to some extent the Young’s modulus and ductility of the LCNF composite films whereas the addition of talc did not improve the film performance. Water absorption of neat LCNF films was lower than the reference CNF and was negatively affected by the addition of PVA.  相似文献   

16.
Cellulose nanofibrils (CNFs) are difficult to redisperse in water after they have been completely dried due to the irreversible agglomeration of cellulose during drying. Here, we have developed a simple process to prepare water-redispersible dried CNFs by the adsorption of small amounts of carboxymethyl cellulose (CMC) and oven drying. The adsorption of CMC onto CNFs in water suspensions at 22 and 121 °C was studied, and the adsorbed amount of CMC was measured via conductimetric titration. The water-redispersibility of dried CNFs adsorbed with different amounts of CMC was characterized by sedimentation test. Above a critical threshold of CMC adsorption, i.e. 2.3 wt%, the oven dried CNF–CMC sample was fully redispersible in water. The morphology, rheological, and mechanical properties of water-redispersed CNF–CMC samples were investigated by field emission scanning electron microscopy, viscosity measurement, and tensile test, respectively. The water-redispersed CNFs preserved the original properties of never dried CNFs. This new method will facilitate the production, transportation and storage, and large-scale industrial applications of CNFs.  相似文献   

17.
A novel type of acetylated cellulose nanofibre (CNF) was extracted successfully from sisal fibres using chemical methods. Initially, a strong alkali treatment was used to swell the fibres, followed by a bleaching step to remove the residual lignin and finally an acetylation step to reduce the impact of the intermolecular hydrogen bonds in the nanocellulose. The result of this sequence of up-scalable chemical treatments was a pulp consisting mainly of micro-sized fibres, which allowed simpler handling through filtration and purification steps and permitted the isolation of an intermediate product with a high solids content. An aqueous dispersion of CNF could be obtained directly from this intermediate pulp by simple magnetic stirring. As a proof of concept, the dispersion was used directly for preparing a highly translucent CNF film, illustrating that there are no large aggregates in the prepared CNF dispersion. Finally, CNF films with alkali extracts were also prepared, resulting in flatter films with an increased mass yield and improved mechanical strength.  相似文献   

18.
The physical properties, such as the fibre dimension and crystallinity, of cellulose nanofibre (CNF) are significant to its functional reinforcement ability in composites. This study used supercritical carbon dioxide as a fibre bundle defibrillation pretreatment for the isolation of CNF from bamboo, in order to enhance its physical properties. The isolated CNF was characterised through zeta potential, TEM, XRD, and FT-IR analysis. Commercial CNF was used as a reference to evaluate the effectiveness of the method. The physical, mechanical, thermal, and wettability properties of the bamboo and commercial CNF-reinforced PLA/chitin were also analysed. The TEM and FT-IR results showed the successful isolation of CNF from bamboo using this method, with good colloidal stability shown by the zeta potential results. The properties of the isolated bamboo CNF were similar to the commercial type. However, the fibre diameter distribution and the crystallinity index significantly differed between the bamboo and the commercial CNF. The bamboo CNF had a smaller fibre size and a higher crystallinity index than the commercial CNF. The results from the CNF-reinforced biocomposite showed that the physical, mechanical, thermal, and wettability properties were significantly different due to the variations in their fibre sizes and crystallinity indices. The properties of bamboo CNF biocomposites were significantly better than those of commercial CNF biocomposites. This indicates that the physical properties (fibre size and crystallinity) of an isolated CNF significantly affect its reinforcement ability in biocomposites. The physical properties of isolated CNFs are partly dependent on their source and production method, among other factors. These composites can be used for various industrial applications, including packaging.  相似文献   

19.
利用甘蔗渣提取纤维素修饰环糊精聚合物,成功制备可再生纤维素/环糊精聚合物(SUG-EPI-CDP)吸附剂。采用傅利叶红外光谱仪(FT-IR)与热重分析仪(TGA)对材料进行表征,同时考察了该材料对水中亚甲基蓝(MB)吸附特性和机理的影响。结果表明:在溶液pH值为7、温度为30 ℃的条件下,SUG-EPI-CDP可在120 min内有效去除MB,去除率达80.9%。通过模型拟合发现,SUG-EPI-CDP对MB的吸附是自发且吸热的过程,符合准二阶动力学方程和Langmuir等温线模型。该吸附剂实验最大吸附量达8.1 mg/g,远高于其他废料所制备的吸附剂。结果表明,利用可再生纤维素修饰可有效提高环糊精聚合物的吸附性能,同时为甘蔗渣资源化利用提供了新途径。  相似文献   

20.
Preparation of cellulose nanofibril (CNF)-reinforced, biodegradable polymer composites is challenging in that it’s hard to achieve good dispersion of the hydrophilic cellulose fibers in a hydrophobic polymer matrix. In this work, we developed a surfactant-free and efficient process to prepare CNF-reinforced poly (lactic acid) (PLA) composites from an aqueous dichloromethane Pickering emulsion self-emulsified by CNFs. CNF/PLA composites of homogeneous dispersion were obtained upon evaporation of CH2Cl2, filtration, drying and hot-pressing. Differential scanning calorimetry measurement revealed an enhanced crystallization capacity of the CNF/PLA composites. Thermogravimetric analysis indicated an increase of onset degradation temperature. The composites displayed an enhanced storage modulus compared with neat PLA throughout the testing temperature range, and especially in the high-temperature region (>70 °C). Enhancements of the flexural modulus and strength were also achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号