首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The pressure dependent Raman scattering in the potassium molybdenum oxide hydrate crystal, K2Mo2O7·H2O, was measured. The high pressure Raman study showed, that the compound remains in the triclinic structure within the 0.0–3.81 GPa range and undergoes a structural phase transition between 3.81 and 4.13 GPa. This particular phase transition is most likely connected with changes in the Raman spectrum, in which the number of modes associated originally with the stretching vibrations in the MoO5 and MoO6 units is increased. However, the phase at atmospheric pressure shows bands due to the presence of only one equivalent site, while in the high-pressure phase, two bands are associated with the stretching modes. Continuing the pressure evolution up to 17.04 GPa, two further phase transitions occurred in this crystal in the 6.3–8.1 GPa and the 12.3–14.0 GPa range, respectively. The Raman spectra measured at about 17.04 GPa presented a crystal structure, which experienced a pre-amorphization with a total loss of all lattice modes. This particular result is indicative that this material may have undergone a complete amorphization at pressures larger than 17.04 GPa. Then, the reversible character in the triclinic P-1 (Ci1) structure was recovered after releasing the pressure.  相似文献   

2.
High pressure Raman spectroscopic measurements on nearly zero thermal expansion material TaO2F are carried out up to 19 GPa. Earlier report of high pressure X-ray diffraction studies shows two phase transitions, one at 0.7 and the other at 4 GPa with rhombohedral (R-3c) structure above 4 GPa, but the structure between 0.7 GPa and 4 GPa remained unclear. In high pressure Raman measurements, a reversible, cubic to rhombohedral phase transformation onsets around 0.8 GPa and gets completed at 4.4 GPa with all four predicted normal modes corresponding to R-3c phase and retaining the structure up to 19 GPa. A mixture of cubic and rhombohedral phases is observed between 0.8 and 4.4 GPa. Optically silent modes in the ambient cubic structure exhibit strong, broad Raman bands due to anionic (O/F) disorder in TaO2F altering the local symmetry and allowing for first order Raman scattering. On compression, these disorder induced first order Raman bands gradually decrease in intensity and disappear around 4.4 GPa due to inhibition of local distortion caused by anions, and the modes corresponding to the rhombohedral phase appear. This is a clear evidence of disorder-free rhombohedral single phase exists above 4.4 GPa in agreement with the reported HPXRD results. Temperature dependent Raman measurements reveal that the intensities of Raman bands remain almost unchanged with rise in temperature indicating static disorder in TaO2F. Disorder-induced first order Raman modes at 176, 212, 381 and 485 cm−1 soften with increase in pressure whereas the other modes show low positive Gruneisen parameter. The thermal expansion coefficient calculated using these Gruneisen parameters (−2.91 ppm K−1) is in fair agreement with the reported values (−1 to +1 ppm K−1). On the other hand, all four modes of disorder-free rhombohedral phase show the usual hardening behavior with increase in pressure contributing to positive thermal expansion.  相似文献   

3.
This paper reports an experimental study about the pressure dependence of the vibrational modes of tricosane paraffin (C23H48) investigated by in situ Raman and infrared spectroscopy in a diamond anvil cell (DAC). The main vibrational bands were followed up to 11 GPa and the observed behavior indicated a conformational disorder induced by pressure, corresponding to a transition from ordered to disordered state of the linear chains from 2 to 5 GPa followed by a transition to an amorphous state under pressure above 5 GPa. However, this behavior was reversible after compression–decompression cycle showing that this linear compound was structurally and chemically stable up to 11 GPa at room temperature.  相似文献   

4.
The present paper reports the phase progression in nano-crystalline oxides PrO2 and CeO2 up to pressures of 49 GPa and 35 GPa, respectively, investigated via in situ Raman spectroscopy at room temperature. The samples were characterized at ambient conditions using X-ray diffraction (XRD), AFM, and Raman spectroscopy and were found to be cubic with fluorite structure. With an increase in applied pressure the cubic bands were seen to steadily shift to higher wavenumbers for both the samples. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa in CeO2 and 33 GPa in PrO2 which were characteristic of an orthorhombic α-PbCl2 type structure. The mode Gruneisen parameters for both the phases were obtained from the pressure dependence of frequency shifts. On decompression, the high pressure phase existed down to a total release of pressure.  相似文献   

5.
In this paper, we present results of high-pressure Raman scattering studies in β-MgMoO4 from atmospheric to 8.5 GPa. The experiments were carried out using methanol–ethanol as pressure medium. By analyzing the pressure dependence of the Raman data (change in the number of lattice modes, splitting of bands and wavenumber discontinuities) we were able to observe a phase transition undergone by the β-MgMoO4 at 1.4 GPa, which is only completed at ∼5 GPa. The transition was observed to be irreversible and the modifications in the Raman spectra were attributed to the changes in coordination of Mo ions from tetrahedral to octahedral. The transition possibly changes the original C2/m symmetry to C2/m or to P2/c. Implication on the phase transition for similar molybdate structures, such as α-MnMoO4, is also highlighted.  相似文献   

6.
Raman spectra of d-threonine crystal were recorded for pressures up to 8.5 GPa. Modifications in the lattice modes indicate that the crystal undergoes two structural phase transitions, the first in the 1.9–2.4 GPa pressure range and the second in the 5.1–6.0 GPa pressure range. Splitting of modes and changes in the intensity of several bands suggest a conformational reorientation of the molecule in the crystal framework between 3.5 and 4.3 GPa. We discussed ours results by comparing with previous high-pressure investigation on l-conformer.  相似文献   

7.
《Polyhedron》2005,24(16-17):2497-2500
We have investigated pressure effects on a dimetallic ferrimagnet [Mn(en)]3[Cr(CN)6]2 · 4H2O (en; ethylenediamine) through the magnetic measurements using a diamond anvil cell in the pressure region up to P = 4.7 GPa. This ferrimagnetic compound has an eminent high transition temperature (Tc) of 69 K at ambient pressure in the structurally characterized molecule-based magnet system. Under hydrostatic pressure, Tc linearly increases against pressure, and exceeds 130 K at P = 4.7 GPa. The amount of the saturated moment hardly changes in the considered pressure region. This pressure experiment might become a prototype of artificial material control for the high-Tc molecule-based magnet.  相似文献   

8.
《Vibrational Spectroscopy》2011,55(2):107-111
Raman spectroscopy investigations of dl-alanine crystal under high pressures have been carried out up to 18.0 GPa. For instance, around 1.0 GPa and between 1.7 and 2.3 GPa changes in the Raman profile were observed and associated to conformational changes of the molecules in the unit cell or to a phase transition accompanied to slight conformational change of the molecule through CH and CH3 groups. Moreover, between 6.0 and 7.3 GPa, the appearance of a new low energy lattice modes and to the splitting of a band assigned to the stretching vibration of the CCH3 moiety were related to a second phase transition. Finally, changes in lattice modes, red shift of the band associated to CCH3 stretching and increasing of line-width of the band associated to the wagging of CO2, between 11.6 and 13.2 GPa, are ascribed to a third phase transition. On release of pressure the original phase was obtained again.  相似文献   

9.
The structure of the complex of dimethylphenyl betaine (DMPB) with dichloroacetic acid (DCA) (1) has been investigated by X-ray diffraction, FTIR and Raman spectroscopy, and B3LYP/6-311 + + G(d,p) calculations. The crystal is monoclinic, space group P21. The acid is connected with betaine through the OH⋯O hydrogen bond of 2.480(2) Å. In the optimized structure the short, asymmetric O⋯O distance is 2.491 Å. FTIR spectrum shows a broad absorption in the 1500–400 cm−1 region characteristic of very short OH⋯O hydrogen bond caused by Fermi resonance between νOH and overtones of δOH and γOH. In the Raman spectrum this broad absorption is not observed. The potential energy distributions (PED) were used for the assignments of IR and Raman frequencies in the experimental and calculated spectra. The FTIR and Raman spectra of the crystal complex are consistent with the X-ray results.  相似文献   

10.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

11.
We have obtained the Raman spectra of dl-leucine crystal through a diamond anvil cell for pressures between 0 and 5 GPa. The observation of several anomalies in the regions of both the lattice mode and the internal mode suggests that the crystal undergoes a phase transition between 2.4 and 3.2 GPa. This phase transition is preceded by a gradual change of the molecular conformation of leucine molecules in the unit cell. We show that, up to 5 GPa, the dl-leucine crystal is more stable than the chiral l-leucine crystal because while the former presents only one phase transition in the 2.4–3.2 GPa interval, the latter presents three different transitions, the first of which is observed at 0.46 GPa. Additionally, when pressure is released to 0.0 GPa, the original Raman spectrum is recovered, indicating that the modification at high pressure on dl-leucine crystal is reversible.  相似文献   

12.
The structural and vibrational properties of caffeic acid phenethyl ester (CAPE) were studied using infrared and Raman spectroscopy in the solid phase and multidimensional nuclear magnetic resonance (NMR) spectroscopy in solution. The theoretical structures of the compound and of its dimer in the gas phase and in DMSO solution by using density functional theory (DFT) were studied. The harmonic vibrational frequencies for the optimized geometry of CAPE and its dimeric species were calculated at the B3LYP level of theory using the 6–31G* basis set. These data allow a complete assignment of the vibration modes of the FTIR and Raman spectra in the solid state using the scaled quantum mechanical force field (SQMFF) methodology. The vibrational analysis for the dimer was performed taking into account the correlation diagram by means of the factor group analysis in accordance with the experimental structure determined by X-ray diffraction. The presence of the dimer of CAPE is supported by the IR bands at 1654, 1635, 1563, 1533, 1300, 1107, 1050, 738 cm−1 and the Raman bands at 1684, 1681, 1634, 1112, 1050, 928, 873, 850, 740, 445, 371 and 141 cm−1. The calculated 1H and 13C chemicals shifts are consistent with the corresponding experimental NMR spectra of the compound in solution. In addition, a natural bond orbital (NBO) study revealed the characteristics of the electronic delocalization of the stable structure, while the corresponding topological properties of the electronic charge density were analyzed by employing Bader's atoms in the molecules theory (AIM).  相似文献   

13.
DL-lysine hydrochloride crystals were studied by Raman spectroscopy under hydrostatic pressure using a diamond anvil cell from ambient pressure up to 9.8 GPa in the spectral range from 1150 to 40 cm−1. Changes in the Raman spectrum were observed in all spectral regions analyzed. In particular, modifications in the lattice modes indicate that the crystal undergoes a phase transition. The classification of the vibrational modes, the behavior of their band wavenumber as a function of the pressure and the reversibility of the phase transitions are also discussed.  相似文献   

14.
In this communication we present topographic images of the Pt(1 1 1) surface in CO saturated 0.1 M HClO4, obtained by scanning tunneling microscopy.The topography presents two different structures, depending on the CO adsorption potential (Ead = 0.15 V or Ead = 0.5 V vs RHE). For adsorption at 0.15 V the system presents a heterogeneous appearance, which totally covers the surface and impedes the observation of steps on the substrate surface. When CO is adsorbed at 0.5 V large clusters forming chains along the steps are observed. These aggregates can be, tentatively, correlated with the H-bonded water structure suggested earlier on the basis of FTIR spectroscopy. The clusters have inhibitory effects on CO oxidation.  相似文献   

15.
Olivine-LiCoXO4 (X = P, As) compounds might transform to the denser spinel-type and Na2CrO4-type structures under pressure. In this work, the relative energetic stability of the three polymorphs and the pressure of the possible polymorphic transformations are investigated combining experiments and first principles calculations. Olivine-LiCoAsO4 is predicted to transform to the Na2CrO4-like structure at 0.4 GPa and to the spinel structure at 5.8 GPa (0 K). Quenching HP/HT experiments show that olivine-LiCoAsO4 treated at 6 GPa/1173 K transforms to the spinel-like structure. Computational results indicate that olivine-LiCoPO4 transforms to the Na2CrO4-like form at around 4 GPa (0 K), the latter being the stable form till very high pressures (21.6 GPa). In good agreement with this, olivine-LiCoPO4 when subjected to 6 GPa/1173 K and 15 GPa/1173 K is converted to the Na2CrO4-type polymorph. Crystallographic data of the new compound LiCoPO4 within the Na2CrO4 structural type are provided.  相似文献   

16.
Raman and infrared spectroscopy were applied for the vibrational characterization of lapachol and its pyran derivatives, α-lapachone and β-lapachone. Experimental spectra of solid state samples were acquired between 4000 and 100 cm−1 in Raman experiments, and between 4000 and 600 cm−1 (mid-infrared) and 600–100 cm−1 (far-infrared) with FTIR spectroscopy, respectively. Full structure optimization and theoretical vibrational wavenumbers were calculated at the B3LYP/6-31 + + G(d,p) level. Detailed assignments of vibrational modes in an experimental and theoretical spectra were based on potential energy distribution analyses, using Veda 4.1 software. Clear differentiation between the three compounds was verified in the region between 1725 and 1525 cm−1, in which the ν(CO) and ν(CC) modes of the quinone moiety were assigned.  相似文献   

17.
Mixed alkali borotungstate glasses with xLi2O–(30  x)Na2O–10WO3–60B2O3 (0  x  30) composition were prepared by melt quench technique. FT-IR and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. Acting as complementary techniques, both IR and Raman measurements revealed that the network structure of the present glasses mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirm the IR results regarding the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system using FTIR and Raman studies.  相似文献   

18.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

19.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

20.
The effect of high external pressures on the Raman and IR spectra of the title compound (I) has been examined at ambient temperature. A pressure-induced phase transition was observed at 13–16 kbar, which is most likely second-order, resulting from slight rotations of the phenyl rings and/or the CH3 groups under the influence of pressure. No new peaks were observed in the spectra with increasing pressure indicating that no pressure-induced linkage isomerism or SnNCS⋯Sn bridging took place. The average pressure sensitivity (dν/dP) of the Raman-active vibrational modes is lower in the low-pressure region (0.23 cm−1/kbar) than in the high-pressure one (0.47 cm−1/kbar). In general, the IR-active modes are less sensitive to increasing pressure than are the Raman-active modes and the average dν/dP value for the IR-active modes in the low-pressure region is quite similar to that in the high-pressure region, i.e., about 0.23 cm−1/kbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号