首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new three‐dimensional frameworks with zeolite‐like channels were prepared in the presence of 1,6‐diaminohexane. Cu1.5(H3N–(CH2)6–NH3)0.5[C6H2(COO)4] · 5H2O ( 1 ) crystallizes in the triclinic space group P$\bar{1}$ with a = 772.56(7), b = 1110.36(7), c = 1111.98(8) pm, α = 98.720(7)°, β = 108.246(9)°, and γ = 95.559(7)°. Cu2(H3N–(CH2)6–NH3)0.5(OH)[C6H2(COO)4] · 3H2O ( 2 ) crystallizes in the monoclinic space group P2/c with a = 1159.34(11), b = 1059.44(7), c = 1582.2(2) pm, and β = 106.130(11)°. The Cu2+ coordination polyhedra are connected by [C6H2(COO)4]4– anions to yield three‐dimensional frameworks with wide centrosymmetric channel‐like voids. Complex 1 reveals voids extending along [100] with diagonals of 900 pm and 300 pm, whereas in complex 2 the diagonal of the nearly rectangular crossection of the channels extending parallel to [001] is 900 pm. The negative excess charges of the frameworks are compensated by [H3N–(CH2)6–NH3]2+ cations, which occupy the voids along with water molecules. The [H3N–(CH2)6–NH3]2+ cations are not connected to Cu2+ and have served as templates.  相似文献   

2.
Three two‐dimensional (2D) coordination complexes, namely [Ca2(HL)2(H2O)5]n · 2nH2O ( 1 ), [Sr(HL)(H2O)3]n · nH2O ( 2 ), and [Ba(HL)(H2O)3]n · nH2O ( 3 ) [H3L = 3‐(3‐carboxy‐phenoxy) phthalic acid], were synthesized by using the ligand H3L and alkaline earth metals. Structural analysis reveals that the structures of complexes 1 – 3 can be described as 2D networks with the point (Schälfli) symbol for net: {312 · 414 · 52} topology. Additionally, the thermal stability and solid‐state luminescent properties of compounds 1 – 3 were investigated at room temperature. The quantum yield (QY) of compound 2 is 10.75 %, which is much higher than the QY of the free H3L ligand (QYH3L < 1 %).  相似文献   

3.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

4.
ACu9X4 ‐ New Compounds with CeNi8, 5Si4, 5 Structure (A: Sr, Ba; X: Si, Ge) The new compounds SrCu9Si4 (a = 8.146(1), c = 11.629(2)Å), BaCu9Si4 (a = 8.198(2), c = 11.735(2)Å), SrCu9Ge4 (a = 8.273(2), c = 11.909(5)Å), and BaCu9Ge4 (a = 8.338(4), c = 12.011(7)Å) are formed by reaction of the elements at 1000° ‐ 1100 °C. They are isotypic (I4/mcm, Z = 4) and crystallize in an ordered variant of the cubic NaZn13 type structure, also built up by the binary phase BaCu13. In the ternary compounds the positions of Cu2 are orderly occupied by copper and silicon and germanium, respectively. This results in a lowering of symmetry and a distortion of the polyhedra. The metallic conductivity of the compounds was confirmed by measurements on BaCu9Si4.  相似文献   

5.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

6.
A simple method for the preparation of metal‐oxide‐coated three‐dimensional (3D) graphene composites was developed. The metal–organic frameworks (MOFs) that served as the precursors of the metal oxides were first synthesized on the 3D graphene networks (3DGNs). The desired metal oxide/3DGN composites were then obtained by a two‐step annealing process. As a proof‐of‐concept application, the obtained ZnO/3DGN and Fe2O3/3DGN materials were used in a photocatalytic reaction and a lithium‐ion battery, respectively. We believe this method could be extended to the synthesis of other metal oxide/3DGN composites with 3D structures simply through the appropriate choice of specific MOFs as precursors.  相似文献   

7.
A new microporous metal organic frameworks Eu2(olz)3 · 7(DMF), based on olsalazine, has been successfully designed and synthesized. Eu‐olz has three‐dimensional structure with dinuclear rare earth cluster and drug molecule olsalazine as ligand, and features as low toxic MOF materials. The Eu‐olz exhibits weak fluorescent emission which can be ascribed to the luminescence of the organic ligand.  相似文献   

8.
Triclinic single crystals of Cu4(H3N–(CH2)9–NH3)(OH)2[C6H2(COO)4]2 · 5H2O were prepared in aqueous solution at 80 °C in the presence of 1,9‐diaminononane. Space group P$\bar{1}$ (no. 2) with a = 1057.5(2), b = 1166.0(2), c = 1576.7(2) pm, α = 106.080(10)°, β = 90.73(2)° and γ = 94.050(10)°. The four crystallographic independent Cu2+ ions are surrounded by five oxygen atoms each with Cu–O distances between 191.4(3) and 231.7(4) pm. The connection between the Cu2+ coordination polyhedra and the [C6H2(COO)4]4– anions yields three‐dimensional framework with negative excess charge and wide centrosymmetric channel‐like voids. These voids extend parallel to [001] with the diagonal of the nearly rectangular cross‐section of approximately 900 pm. The channels of the framework accommodate [H3N–(CH2)9–NH3]2+ cations and water molecules, which are not connected to Cu2+. The nonane‐1,9‐diammonium cations adopt a partial gauche conformation. Thermoanalytical measurements in air show a loss of water of crystallization starting at 90 °C and finishing at approx. 170 °C. The dehydrated compound is stable up to 260 °C followed by an exothermic decomposition yielding copper oxide.  相似文献   

9.
Turquoise monoclinic single crystals of the novel three‐dimensional Cu28‐O3P(CH2)2PO3] · 3.2H2O coordination polymer were prepared using the silica gel method. Space group C2/m (no. 12) with a = 1483.6(2), b = 668.44(8), c = 436.30(6) pm, β = 93.28(2)°. The Cu2+ cation is coordinated by four oxygen atoms stemming from the 1,2‐ethylenediphosphonate dianions in a square planar manner and two water molecules in the axial positions. The connection between the Cu2+ cations and the [CPO3] units from the 1,2‐ethylenediphosphonate dianions leads to layers parallel to (100), which are linked by the ethylene groups to a three‐dimensional framework with channel‐like voids. The channel‐like voids accommodate water molecules not bound to Cu2+ and extend parallel to [001] with an opening of about 550 pm × 260 pm. Magnetic measurements reveal an antiferromagnetic behavior due to a superexchange coupling between Cu2+ ions through an oxygen bridge. The UV/Vis spectrum reveals three d–d transition bands at 694, 774, and 918 nm. The compound can be fully dehydrated by thermal treatment and rehydrated by storage in ambient air.  相似文献   

10.
Two metal‐organic frameworks, [Zn(dmtrz)(btrc)1/3]n ( 1 ) and [Zn2(dmtrz)2(btec)(H2O)2]n ( 2 ) (dmtrz = 3, 5‐dimethyl‐1‐H‐1, 2,4‐triazole, btrc = 1, 3,5‐benzenetricarboxylate, btec = 1, 2,4, 5‐benzenetetracarboxylate), were synthesized by hydrothermal reaction. The crystal structure analysis reveals that compound 1 is a dense 3D framework with Schläfli symbols of {43}2{46 · 66 · 83}3, which is a loh1 structure. Compound 2 is a 2D network. In addition, the photoluminescence of two compounds were studied in solid state at room temperature, together with their thermal analysis.  相似文献   

11.
Multi‐component metal–organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi‐component MOFs, namely PCN‐900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare‐earth hexanuclear clusters (RE6) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm2 g?1) and unlimited tunability by modification of metal nodes and/or linker components. Post‐synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis.  相似文献   

12.
The 2D CuII metal‐organic framework [Cu2(bptc)(H2O)4]n · 4nH2O ( 1 ) (H4bptc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid) was hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and magnetic measurements. In the structure, bptc4– serves as a twisted Π‐shaped organic building block to connect paddlewheel [Cu2(COO)4] dinuclear units and mononuclear units through 2‐/2′‐carboxylate and 4‐/4′‐carboxylate, respectively. According to the magnetic analysis using a dimer‐plus‐monomer model, strong antiferromagnetic coupling is operative within the dinuclear unit (J = –311 cm–1 based on H = –J S 1 S 2), and the compound behaves like a mononuclear molecule at low temperature.  相似文献   

13.
The stability against hydrolysis of triazine tricarboxylate (TTC) in the presence of divalent transition metal and alkaline earth ions was investigated by means of X‐ray diffraction and FTIR spectroscopy. Depending on the size of the cation either formation of the respective triazine tricarboxylate salts or hydrolysis of TTC yielding oxalate was observed. The hydrolysis of TTC induced by transition metal ions could be explained in analogy to the hydrolysis of triazine tris(2‐pyrimidyl) as a result of ring tension caused by the coordination of these ions. By the reaction of potassium triazine tricarboxylate with alkaline earth salts in aqueous solution the alkaline earth triazine tricarboxylates M3[C3N3(CO2)3]2 · 12H2O (M = Sr, Ba) were obtained and analyzed by single‐crystal X‐ray diffraction. The isotypic salts represent the first examples of alkaline earth triazine tricarboxylates and the first TTC salts comprising solely divalent cations.  相似文献   

14.
Two new 3D heterometallic frameworks, [Me2NH2][CaCd2(BTC)(HBTC)2] · 4H2O ( 1 ) and [Ba11Co2(BTC)83‐OH)22‐H2O)6(H2O)16] ( 2 ) (H3BTC = 1,3,5‐benzenetricarboxylic acid, Me2NH2 = protonated dimethylamine), were synthesized using solvothermal and hydrothermal techniques, respectively. Complex 1 features a 3D microporous framework; it contains hourglass‐like trinuclear [CaCd2(COO)6] clusters that are bridged by –COO groups and form zigzag chains. These chains are further interlinked by the –COO groups of BTC3– ligands into 2D layers with interesting flower‐like configuration, which, in turn, are connected by HBTC2– ligands to afford the 3D structure. Me2NH2+ cations not only balance the negative charges of the host framework but also play template roles to fill in the channels, further consolidating the whole framework. The complicated 3D network of complex 2 is constructed by the interconnection of 2D layers, which, in turn, are made of the infinite inorganic chains based on hexanuclear [Ba6] clusters, and these 1D chains are decorated by {CoO6} octahedrons. Interestingly, the 2D layer can be viewed as a unique structure composed of two different kinds of heart‐shaped rings, which partially overlapped in apical positions to produce a ten‐membered ring window. Moreover, the luminescence properties of 1 – 2 and the gas adsorption property of 1 have also been studied.  相似文献   

15.
Two metal‐organic frameworks, [Co2(ABTC)(bimh)(OH)] · 2H2O ( 1 ) and [Co3(ABTC)2(dimb)4]n ( 2 ) [H3ABTC = 3,4′,5‐azobenzenetricarboxylic acid, bimh = 1,1′‐(1,4‐hexanediy)bis(imidazole), dimb = 1,4‐bis(1H‐imidazol‐1‐yl)benzene], were prepared under solvothermal conditions and structurally characterized. Complex 1 demonstrates a complicated 3D (3,8)‐connected tfz‐d net with (43)2(46.617.85) topology. The framework of 2 can be classified as a rare 3D (3,6,6)‐connected net with the Schäfli symbol of (4.62)2(42.610.83)(44.610.8), and exhibits an intriguing self‐penetrating motif. Meanwhile, the thermal stabilities and magnetic properties for 1 and 2 were also probed.  相似文献   

16.
This study examines the crystal structures of the AB(HCO2)3 (A = Li or Na and B = Mn or Co) metal‐organic frameworks, which we find to adopt a chiral cubic P213 structure. This shows that the Li containing formates are isostructural with their Na analogues, extending the phase stability of this chiral architecture. The Mn containing compounds have a magnetic sublattice similar to β‐Mn, long of interest due to its highly frustrated antiferromagnetic coupling. In contrast the Co formates appear to have partially disordered alkali and transition metal cations, which prevents the formation of a clean β‐Mn‐like magnetic sublattice. We have also re‐examined the magnetic properties of NaMn(HCO2)3 finding it to be a simple paramagnet down to 2 K with only weak antiferromagnetic coupling.  相似文献   

17.
A new two‐dimensional metal‐organic framework [Zn(bqdc)]n (bqdc = 2,2′‐biquinoline‐4,4′‐dicarboxylate) was obtained by the reaction of ligand 2,2′‐biquinoline‐4,4′‐dicarboxylic acid (H2bqdc) and Zn(CH3COO)2·2H2O under hydrothermal conditions. It has been characterized by elemental analysis, FT‐IR, 1H‐NMR and single crystal X‐ray crystallography. It crystallizes in the monoclinic space group P21/n and exhibits a 2D zig‐zag network, assisted by face‐to‐face π‐π interactions of quinoline rings. In addition, it has a fluorescence emission in the solution state at room temperature.  相似文献   

18.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

19.
20.
The reaction of 4‐amino‐1,2,4‐Δ2‐triazoline‐5‐thione (ATT, 1 ) with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, 1H NMR, IR, and Raman spectroscopy as well as single‐crystal X‐ray diffraction. The molecular structure of 1 was also determined by single crystal X‐ray analysis. Crystal data for 1 at ?80 C: space group C2/c with a = 2107.4(2), b = 1425.1(1), c = 688.4(1) pm, β = 104.55(1)°, Z = 16, R1 = 0.0514, crystal data for 2 at ?80 °C: space group P21/c with a = 675.7(1), b = 1321.1(1), c = 1311.2(1) pm, β = 90.03(1)°, Z = 4, R1 = 0.0437.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号