首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

2.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

3.
The structures of the diastereoisomers Λ(+)578‐, (I), and Δ(−)578‐bis(ethane‐1,2‐diamine)[β‐ethyl (S)‐aspartato‐κ2N,O1]cobalt(III) bis(perchlorate) monohydrate, (II), both [Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2O, are compared. In both structures, the ester group of the amino acid side chain is engaged only in intramolecular hydrogen bonding to coordinated amine groups. This interaction is stronger in (I) and correlates with previously observed diastereoisomeric equilibrium ratios for related metal complex systems in aqueous media. The two perchlorate anions of (II) are located on twofold axes. Both perchlorates in (I) and one of the perchlorates in (II) are affected by disorder. Both structures exhibit extensive three‐dimensional hydrogen‐bonding networks.  相似文献   

4.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

5.
Phosphate esters provide a rigid and stable polymeric backbone in nucleic acids. Metal complexes with phosphate ester groups have been synthesized as structural and spectroscopic models of phosphate‐containing enzymes. Dinucleating ligands are used extensively to synthesize model complexes since they provide the support required to stabilize such complexes. The crystal structures of two dinuclear CoII complexes, namely bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C19H19N3O)2](ClO4)2, and bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C21H18N4)2](ClO4)2, with tetradentate 2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline (L 1) and N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine (L 2) ligands are reported. The complexes have similar structures, with distorted octahedral geometries around the metal centres. Both are centrosymmetric (Z ′ = 0.5), with the CoII centres doubly bridged by diphenyl phosphate ester groups. A number of aromatic–aromatic interactions are present and differ between the two complexes as the anisole group in L 1 is replaced by a quinoline group in L 2. A detailed study of these interactions is presented.  相似文献   

6.
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction.  相似文献   

7.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

8.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

9.
A new cyanide‐bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena‐poly[[[N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidato)‐κ4N,N′,N′′,N′′′]iron(III)]‐μ‐cyanido‐κ2C:N‐[bis(4,4′‐bipyridine‐κN)bis(methanol‐κO)manganese(II)]‐μ‐cyanido‐κ2N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4}n, ( 1 ), was prepared by the self‐assembly of the trans‐dicyanidoiron(III)‐containing building block [Fe(bpb)(CN)2]? [bpb2? = N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′‐bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide‐bridged Fe–Mn units, with free perchlorate as the charge‐balancing anion, which can be further extended into a two‐dimensional supramolecular sheet structure via inter‐chain π–π interactions between the 4,4′‐bipyridine ligands. Within the chain, each MnII ion is six‐coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide‐bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one‐dimensional alternating chain model leads to the magnetic coupling constants J1 = ?1.35 and J2 = ?1.05 cm?1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian‐based density functional theoretical (DFT) calculations.  相似文献   

10.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

11.
The reactivity of the cobalt(III) complexes dichlorido[tris(2‐aminoethyl)amine]cobalt(III) chloride, [CoCl2(tren)]Cl, and dichlorido(triethylenetetramine)cobalt(III) chloride, [CoCl2(trien)]Cl, towards different amino acids (l ‐proline, l ‐asparagine, l ‐histidine and l ‐aspartic acid) was explored in detail. This study presents the crystal structures of three amino acidate cobalt(III) complexes, namely, (l ‐prolinato‐κ2N,O)[tris(2‐aminoethyl)amine‐κ4N,N′,N′′,N′′′]cobalt(III) diiodide monohydrate, [Co(C5H8NO2)(C6H18N4)]I2·H2O, I , (l ‐asparaginato‐κ2N,O)[tris(2‐aminoethyl)amine‐κ4N,N′,N′′,N′′′]cobalt(III) chloride perchlorate, [Co(C4H7N2O3)(C6H18N4)](Cl)(ClO4), II , and (l ‐prolinato‐κ2N,O)(triethylenetetramine‐κ4N,N′,N′′,N′′′)cobalt(III) chloride perchlorate, [Co(C4H7N2O3)(C6H18N4)](Cl)(ClO4), V . The syntheses of the complexes were followed by characterization using UV–Vis spectroscopy of the reaction mixtures and the initial rates of reaction were obtained by calculating the slopes of absorbance versus time plots. The initial rates suggest a stronger reactivity and hence greater affinity of the cobalt(III) complexes towards basic amino acids. The biocompatibility of the complexes was also assessed by evaluating the cytotoxicity of the complexes on cultured normal human fibroblast cells (WS1) in vitro. The compounds were found to be nontoxic after 24 h of incubation at concentrations up to 25 mM.  相似文献   

12.
Two copper complex solvatomorphs, namely (3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecane)bis(perchlorato‐κO)copper(II) 1.2‐hydrate, [Cu(ClO4)2(C18H40N4)]·1.2H2O, (I), and (3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecane)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (II), are described and compared with each other and with a third, already reported, anhydrous diastereomer, denoted (III). Both compounds present very similar centrosymmetic coordination environments, with the CuII cation lying on an inversion centre in a distorted 4+2 octahedral environment, defined by the macrocyclic N4 group in the equatorial sites and two perchlorate groups in trans‐axial positions [one of the perchlorate ligands in (I) is partially disordered]. The most significant difference in molecular shape is seen in the orientation of the perchlorate anions, and the influence of this on the intramolecular hydrogen bonding is discussed. The (partially) hydrated state of (I) favours the formation of chains along [011], while the anhydrous character of (II) and (III) promotes loosely bound structures with low packing indices.  相似文献   

13.
The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel ZnII complexes, namely bis(acetato‐κO)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II) monohydrate, [Zn(C13H15N5)2(C2H3O2)2]·H2O, ( 1 ), and bis(azido‐κN1)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II), [Zn(C13H15N5)2(N3)2], ( 2 ), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction analysis. Both complexes exhibit a three‐dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that ( 1 ) is a promising fluorescence sensor for detecting Fe3+ ions and ( 2 ) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.  相似文献   

14.
The title compounds, trans‐diaquabis(nitrato‐κO)bis(pyridine‐4‐carboxamide‐κN1)copper(II), [Cu(NO3)2(C6H6N2O)2(H2O)2], (I), and trans‐diaquatetrakis(pyridine‐4‐carboxamide‐κN1)copper(II) bis(perchlorate), [Cu(C6H6N2O)4(H2O)2](ClO4)2, (II), are composed of mononuclear coordination entities involving CuII ions and isonicotinamide. In (I), the centrosymmetric tetragonally distorted octahedral copper(II) environment contains trans‐related isonicotinamide and water molecules in the equatorial plane and two nitrate ions occupying the axial sites. In (II), the equatorial plane of the C2‐symmetric distorted octahedron is built up of four isonicotinamide ligands, while water molecules occupy the axial positions. The complex molecules of (I) and (II) are linked into three‐dimensional supramolecular frameworks by O—H...O and N—H...O hydrogen bonds. The nitrate and perchlorate ions are building blocks that disturb the robust R22(8) amide supramolecular motif commonly found in crystal structures of copper–isonicotinamide complexes.  相似文献   

15.
Naphthalenediimides, a class of organic dyes with an expanded π‐electron‐deficient plane, have attracted considerable interest because of their photoinduced electron transfer from neutral organic moieties to stable anionic radicals. This makes them excellent candidates for organic linkers in the construction of photochromic coordination polymers. Such a photochromic two‐dimensional coordination polymer has been prepared using N,N′‐bis(pyridin‐4‐ylmethyl)naphthalene‐1,8:4,5‐bis(dicarboximide) (DPMNI). In crystallization tubes, upon slow diffusion of an MeOH solution of cadmium perchlorate into a CHCl3 solution of DPMNI, the complex poly[[bis[μ2‐2,7‐bis(pyridin‐4‐ylmethyl)benzo[imn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetrone‐κ2N:N′]bis(perchlorato‐κO)cadmium(II)] chloroform tetrasolvate], {[Cd(C26H16N4O4)2(ClO4)2]·4CHCl3}n, (I), was obtained. The asymmetric unit contains one Cd2+ cation, two DPMNI ligands, two coordinated ClO4 anions and four CHCl3 solvent molecules. Each Cd2+ cation is interconnected by four DPMNI linkers to generate a neutral two‐dimensional naphthalenediimide coordination network with all the ClO4 anions above or below this plane. Strong interlaminar anion–π interactions between the coordinated ClO4 anions and the imide rings of an adjacent layer lead to a three‐dimensional supramolecular structure. Compound (I) exhibits reversible photochromic behaviour and photocontrolled tunable luminescence properties, which may originate from the photoinduced electron‐transfer generation of radicals in the DPMNI ligand.  相似文献   

16.
Bis(N,N‐di‐n‐butyl­di­thio­carbamato‐κ2S,S′)(1,10‐phenanthroline‐κ2N,N′)­zinc(II) ethanol hemisolvate, [Zn(C9H18NS2)2(C12H8N2)]·0.5C2H6O, (I), and bis(N,N‐di‐n‐hexyldithiocarbamato‐κ2S,S′)­bis(1,10‐phenanthroline‐κ2N,N′)calcium(II), [Ca(C13H26NS2)2(C12H8N2)2], (II), are mixed‐ligand com­plexes. In the first compound, the Zn atom has a distorted octahedral coordination, while in the second compound, the Ca atom is eight‐coordinate, with four S and four N atoms forming a highly distorted cube.  相似文献   

17.
In the crystal structure of (acetonitrile‐κN)[13‐methyl‐39‐oxido‐1,17,25‐tri­aza‐9‐azonia‐28,31,36‐trioxapentacyclo[23.8.5.111,15.03,8.018,23]nonatriaconta‐3,5,7,9,11,13,15(39),16,18,20,22‐un­decaene‐κ7N1,N17,N25,O28,O31,O36,O39](perchlorato‐κ2O,O′)barium(II) perchlorate acetonitrile hemisolvate, [Ba(ClO4)(C2H3N)(C33H40N4O4)]ClO4·0.5CH3CN, the barium(II) cation is asymmetrically situated in the macrobicyclic cavity and is bound to seven of the eight heteroatoms of the macrobicyclic ligand, to the N atom of an aceto­nitrile mol­ecule and to two O atoms of one perchlorate group. The azonia N atom is not coordinated to the barium(II) cation and is involved in an intramolecular hydrogen‐bonding interaction with the oxido O atom.  相似文献   

18.
The title pendent‐arm macrocyclic hexa­amine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous NiII and ZnII complexes (both as perchlorate salts), namely (cis‐6,13‐di­methyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐di­amine‐κ6N)­nickel(II) di­per­chlorate, [Ni(C12H30N6)]­­(ClO4)2, and (cis‐6,13‐di­methyl‐1,4,8,11‐tetraaza‐cyclo­tetra­decane‐6,13‐di­amine‐κ6N)­zinc(II) di­per­chlorate, [Zn(C12H30N6)]­(ClO4)2. Distortion of the N—M—N valence angles from their ideal octahedral values becomes more pronounced with increasing metal‐ion size and the present results are compared with other structures of this ligand.  相似文献   

19.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

20.
The three transition‐metal complexes, (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (I), (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(nitrato‐κO)zinc(II), [Zn(NO3)2(C18H40N4)], (II), and aquachlorido(meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)copper(II) chloride, [CuCl(C18H40N4)(H2O)]Cl, (III), are described. The molecules display a very similarly distorted 4+2 octahedral environment for the cation [located at an inversion centre in (I) and (II)], defined by the macrocycle N4 group in the equatorial sites and two further ligands in trans‐axial positions [two O–ClO3 ligands in (I), two O–NO2 ligands in (II) and one chloride and one aqua ligand in (III)]. The most significant difference in molecular shape resides in these axial ligands, the effect of which on the intra‐ and intermolecular hydrogen bonding is discussed. In the case of (I), all strong hydrogen‐bond donors are saturated in intramolecular interactions, while weak intermolecular C—H...O contacts result in a three‐dimensional network. In (II) and (III), instead, there are N—H and O—H donors left over for intermolecular interactions, giving rise to the formation of strongly linked but weakly interacting chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号