首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, C16H19NO5, crystallizes as a centrosymmetric dimer through strong O—H⋯O hydrogen‐bonding interactions between the hydroxy­phenyl and morpholino­carbonyl groups. The morpholino­carbonyl group is almost perpendicular to the propenoate moiety. Electron delocalization in the N—C(=O) fragment leads to the formation of hydrogen‐bonded S(5) ring motifs through C—H⋯O interactions.  相似文献   

2.
The title compound, C9H13N4O3+·NO3, is the first structurally characterized Schiff base derived from semicarbazide and pyridoxal. Unusually for an unsubstituted semicarbazone, the compound adopts a syn conformation, in which the carbonyl O atom is in a cis disposition relative to the azomethine N atom. This arrangement is supported by a pair of hydrogen bonds between the organic cation and the nitrate anion. The cation is essentially planar, with only a hydroxymethyl O atom deviating significantly from the mean plane of the remaining atoms (r.m.s. deviation of the remaining non‐H atoms = 0.01 Å). The molecules are linked into flat layers by N—H...O and C—H...O hydrogen bonds. O—H...O hydrogen bonds involving the hydroxymethyl group as a donor interconnect the layers into a three‐dimensional structure.  相似文献   

3.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

4.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

5.
In the crystal structure of the title compound, C9H9NO3, there are strong intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds which, together with weak inter­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules. The calculated inter­molecular hydrogen‐bond energies are −11.3 and −2.7 kJ mol−1, respectively, showing the dominant role of the O—H⋯O hydrogen bonding. A natural bond orbital analysis revealed the electron contribution of the lone pairs of the oxazoline N and O atoms, and of the two hydr­oxy O atoms, to the order of the relevant bonds.  相似文献   

6.
In the title compound, also known as N‐carbamoyl‐l ‐proline, C6H10N2O3, the pyrrolidine ring adopts a half‐chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2)°. Molecules are joined by N—H...O and O—H...O hydrogen bonds into cyclic structures with graph‐set R22(8), forming chains in the b‐axis direction that are further connected via N—H...O hydrogen bonds into a three‐dimensional network.  相似文献   

7.
In the title salt, C5H12N+·C29H23O6?, both benzo­pyran systems are planar. Intermolecular N—H?O hydrogen bonds and a short O—H?O intramolecular hydrogen bond are observed in the structure.  相似文献   

8.
In the title racemic hemihydrated solvatomorph of carvedilol (carv), C24H26N2O4·0.5H2O, the asymmetric unit contains two independent organic moieties and one water molecule. Within this 2(carv)·H2O unit, the molecular components are strongly linked by hydrogen bonds and the unit acts as the basic building block for the crystal structure. Interactions parallel to (10) generate hydrogen‐bonded layers which are further linked by much weaker C—H...N/O interactions. The conformations of the organic molecules, as well as the hydrogen‐bonding interactions connecting them, are compared with other related structures in the literature.  相似文献   

9.
The molecular structure of the title compound, C14H14BrF3O2, adopts a bent conformation. Intramolecular O—H?F and intermolecular O—H?O interactions form a bifurcated hydrogen bond which produces a supramolecular assembly of head‐to‐tail dimers.  相似文献   

10.
The title compound, C19H20O6, crystallizes in the centrosymmetric space group P21/c with one mol­ecule in the asymmetric unit. The mol­ecule is approximately planar and the dihedral angle between the phenyl rings is 11.0 (1)°. The H atoms of the central propenone group are trans. There is an intramolecular O—H⃛O hydrogen bond and the mol­ecules are crosslinked by four intermolecular C—H⃛O hydrogen bonds, producing a three‐dimensional network.  相似文献   

11.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

12.
In the crystal structure of the title compound, C21H21NO2, strong N—H⋯O and O—H⋯O hydrogen bonds exist. The keto–amine form is favoured over the enol–imine form in the tautomerism. Six‐membered chelate rings formed by intra­molecular hydrogen bonds increase the stability of the whole mol­ecule. Inter­molecular hydrogen bonds link adjacent units together, forming an infinite one‐dimensional chain parallel to the a axis.  相似文献   

13.
The title compound, C14H12O4, forms crystals which appear monoclinic but are actually twinned triclinic. The asymmetric unit consists of two similar mol­ecules, which differ only in the conformation of the 3‐oxobutyl side chain. The mol­ecular conformation is characterized by an intra­molecular O—H⋯O hydrogen bond between the hydroxy group and the adjacent carbonyl O atom. The crystal structure is stabilized by O—H⋯O hydrogen bonds connecting the mol­ecules into zigzag chains running along the b axis.  相似文献   

14.
The title compounds, both [Fe(C5H5)(C15H14NO2)], crystallize with Z′ = 2 in the centrosymmetric space group P. In each compound, there is an intra­molecular N—H⋯O=C hydrogen bond, and pairs of inter­molecular O—H⋯O=C hydrogen bonds link the mol­ecules into chains, parallel to [10] in the 3‐hydr­oxy compound and parallel to [10] in the 4‐hydr­oxy compound.  相似文献   

15.
The title compound, C10H14N2O3, is a Schiff base which is derived from pyridoxal and represents, therefore, a vitamin B6‐related compound. Molecules are linked into sheets by a combination of O—H...O and O—H...N hydrogen bonds.  相似文献   

16.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

17.
In the crystal structure of the title compound, C11H13NO2, there are strong inter­molecular O—H⋯N hydrogen bonds which, together with weak intra­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules, held together by weak inter­molecular C—H⋯O hydrogen bonds. A theoretical investigation of the hydrogen bonding, based on density functional theory (DFT) employing periodic boundary conditions, is in agreement with the experimental data. The cluster approach shows that the influence of the crystal field and of hydrogen‐bond formation are responsible for the deformation of the 2‐oxazoline ring, which is not planar and adopts a 4T3 (C3TC2) conformation.  相似文献   

18.
The title compound, C19H23N3O5, adopts the keto–amine tautomeric form with the hydr­oxy H atom located on the N atom, where it is involved in a strong intra­molecular N—H⋯O hydrogen bond. The compound exhibits trans geometry with respect to the azo N=N double bond, with a dihedral angle between the two benzene rings of 38.03 (6)°. The packing of the mol­ecules in the crystal structure is determined by O—H⋯O and C—H⋯O hydrogen bonds. A comparison with closely related compounds is given.  相似文献   

19.
The title compound, C17H15NO4, derived from l ‐tyrosine, crystallizes with three independent mol­ecules which differ in the conformation of the asymmetric unit: the N—C—C—Cipso torsion angles are ?71.7 (5), ?63.6 (6) and ?52.5 (5)°, respectively. Deformations in the phenol ring hydroxy O—C—C angles of 116.5 (4)/123.9 (4), 121.7 (5)/118.1 (4) and 122.4 (5)/118.6 (5)°, respectively, result from their respective intermolecular hydrogen‐bonding environments. Intermolecular Oacid—H?O=Cindole, Ophenol—H?O—Hphenol and Ophenol—H?O=Cindole hydrogen bonds, with O?O distances in the range 2.607 (4)–2.809 (4) Å, are present in combination with C—H?O and C—H?πarene interactions. The primary hydrogen‐bonding systems assemble with graph sets R33(8) and R32(22).  相似文献   

20.
In the title compound, C19H20O8, the benzene rings are nearly perpendicular to each other [dihedral angle 80.2 (2)°]. The carboxy group is twisted out while both the methoxy and acetyl groups are almost coplanar with their attached benzene rings. The hydroxy group is involved in an intramolecular O—H?O hydrogen bond with the acetyl O atom and the compound is connected through an intermolecular O—H?O contact to form a dimer. The crystal structure is stabilized by intermolecular O—H?O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号