首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The piezoelectric properties of the cobalt‐modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics were investigated. The piezoelectric properties of NBT ceramics were significantly enhanced by cobalt modification. The Curie temperature TC and piezoelectric constant d33 for the 0.3 wt% cobalt‐modified NBT ceramics (NBT‐C3) were found to be 663 °C and 30 pC/N, respectively. Thermal annealing studies presented that the cobalt‐modified NBT ceramics possess stable piezoelectric properties, demonstrating that the cobalt‐modified NBT‐based ceramics are promising candidates for high temperature piezoelectric applications. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The piezoelectric properties of the (KCe)-substituted sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics are investigated. The piezoelectric properties of NBT ceramics are significantly enhanced by (KCe) substitution. The Curie temperature Tc, and piezoelectric coefficient d33 for the (KCe)-substituted NBT are found to be 663ºC, and 27pC/N, respectively. Dielectric and annealing spectroscopy resent that the (KCe) co-substituted NBT piezoelectric ceramics possess stable piezoelectric properties.  相似文献   

3.
0.38Bi(Gax Sc1–x )O3–0.62PbTiO3 (BGSPTx) ceramics have been prepared by using the conventional mixed oxide method. X‐ray diffraction analysis revealed that BGSPTx has a pure perovskite structure, and the crystal symmetry of BGSPTx changed from rhombohedral to tetragonal with increasing Ga content (x). The Curie temperature (TC) of BGSPTx ceramics is in the range of 448–467 °C for different x. The ferroelectric phase transition of BGSPTx was found to be of the first order type according to the Curie–Weiss law. For x = 0.125, BGSPTx ceramics show enhanced piezoelectric properties: piezoelectric constant d33 = 420 pC/N and d31 = –142 pC/N, planar and thickness electromechanical coupling factors kp = 56.27% and kt = 56.00%, respectively. The high‐TC of BGSPTx coupled with its excellent piezoelectric properties suggests those future high‐temperature applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
New lead‐free piezoelectric (1 – x)[(K0.4725Na0.4725)Li0.055]NbO3x (Ag0.5Li0.5)TaO3 [(1 – x)KNNL–x ALT] ceramics were prepared by conventional sintering. Piezoelectric and ferroelectric properties and Curie temperature of the ceramics were studied. The (1 – x)KNNL–x ALT (x = 0.04) ceramics exhibit good properties (d33 ~ 252 pC/N, kp ~ 41%, TC ~ 471 °C, To–t = 47 °C, Pr = 33.1 μC/cm2, Ec = 10.6 kV/cm). These results show that (1 – x)KNNL–x ALT (x = 0.04) ceramic is a promising lead‐free piezoelectric material for high temperature application. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Li, Ta modified (K,Na)NbO3 single crystals with the size of 18 mm × 18 mm × 10 mm were successfully grown by top‐seeded solution growth method, with orthorhombic–tetra‐gonal phase transition temperature ~79 °C and Curie temperature ~276 °C. The electromechanical coupling factors k33 and kt were found to be ~88% and ~65%, respectively. The piezoelectric coefficient d33 for the [001]c poled crystals reached 255 pC/N. In addition, the electromechanical coupling factor exhibited high stability over the temperature range of –50 °C to 70 °C, making these lead free crystals good candidates for electromechanical applications. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this study, monophasic Bax(Na0.5Bi0.5)1−xBi4Ti4O15 (x=0.03, 0.06, 0.09 and 0.12) ceramics fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. X-ray diffraction analysis revealed that the barium-modified Na0.5Bi4.5Ti4O15 ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties and phase transitions were studied and are explained in terms of lattice response of these ceramics. A shift in ferroelectric–paraelectric phase transition (Tc) to lower temperatures and a corresponding increase in permittivity peak with increasing concentration of Ba2+ are also observed. The decrease of orthorhombicity in the lattice structure by the larger Ba2+ ion incorporation, indicating an approach of a and b parameters, results in lower Curie temperature. The piezoelectric activity of Na0.5Bi4.5Ti4O15 (NBT) ceramics was significantly improved by the modification of barium. The Curie temperature Tc and piezoelectric coefficient d33 for the composition with x=0.12 were found to be 635 °C and 21 pC/N, respectively. The relationship of polarization with lattice response is discussed.  相似文献   

7.
In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3xCuO–yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT–CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ?r = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.  相似文献   

8.
Lead‐free (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 (NBT‐BT6) nanofibers were synthesized by the sol–gel process and electrospinning, and a butterfly‐shaped piezoelectric response was measured by scanning force microscopy. NBT‐BT6 nanofibers with perovskite phase were formed, after being cleaned at 700 °C for 1 hour, and the diameters are in the range of 150 nm to 300 nm. The average value of the effective piezoelectric coefficient d33 is 102 pm/V. The high piezoelectricity may be attributed to the easiness for the electric field to tilt the polar vector of the domain and to the increase of the possible spontaneous polarization direction. There is a potential for the application of NBT‐BT6 nanofibers in nanoscale piezoelectric devices. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
(1 – x)Pb(Hf1–yTiy)O3x Pb(Mg1/3Nb2/3)O3 (x = 0.1 ~ 0.25, y = 0.555) ternary piezoelectric ceramics were prepared using the two‐step precursor method. Morphotropic phase boundary (MPB) compositions, located at x = 0.18 ~ 0.22, were confirmed using X‐ray diffraction and by their dielectric, piezoelectric and ferroelectric properties. The optimum dielectric and piezoelectric properties were achieved for the MPB composition 0.8Pb(Hf0.445Ti0.555)O3–0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity εr, piezoelectric coefficient d33, planar electromechanical coupling kp and Curie temperature TC being on the order of 2800, 680 pC/N, 70% and 276 °C, respectively. Of particular significance is that the new ternary ceramics exhibit comparable piezoelectric and electromechanical properties to commercial PZT5H ceramics, but with much improved TC, showing a potential for applications at elevated temperature. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
CaCu3+yTi4O12 (y=0, ±0.025, ±0.05, ±0.1 and −0.15) ceramics are prepared by the conventional solid-state reaction technique under sintering condition of 1050 °C, 10 h. X-ray diffraction shows that they all have the good crystalline structure. Cu-deficient ceramics exhibit the microstructures of uniform grain size distribution, whereas both Cu-stoichiometric and Cu-rich ceramics display microstructures of bimodal grain size distribution. The largeness of low-frequency dielectric permittivity at room temperature is found to be very sensitive to the Cu-stoichiometry. Upon raising the measuring temperature, all of the ceramics present commonly three semicircles in the complex impedance plane. It indicates that there exist three distinct contributions, which are ascribed to arising from domains, grain boundaries and domain boundaries. In addition, the influence of CuO segregation on the dielectric and electrical properties is also discussed.  相似文献   

11.
The depolarization temperature (Td) of piezoelectric materials is an important figure of merit for their application at elevated temperatures. This study focuses on the effect of BaTiO3 (BT) nanowires on Td and piezoelectric properties of morphotropic-phase-boundary 0.90NBT–0.05KBT–0.05BT ceramics. The results reveal that BaTiO3 nanowires can pin the domain wall, leading to the increase of coercive field (Ec) from 21.06 kV/cm to 34.99 kV/cm. The Td value of 0.90NBT–0.05KBT–0.05BT ceramics can be enhanced approximately 20 °C when using BT nanowires instead of BT solution as the raw material. Meanwhile, at the same polarization conditions, the piezoelectric constant of the ceramic added BT nanowires (172 pC/N) is decreased but still remains a larger value compared with those of other lead-free ceramics. The results imply that the addition of BT nanowires into NBT–KBT is a very effective route to improve Td.  相似文献   

12.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

13.
Composites of (1 ? x)Na0.5Bi0.5TiO3-(x)SrTiO3, where x = 0.05, 0.10, 0.15, 0.2, 0.3 and 0.9 are studied. Individual compounds are synthesized by sol gel, and composites are prepared by solid-state sintering process. Through the analysis of X-ray diffraction, lattice parameters are obtained and, from scanning electron microscope (SEM), micro-structure of the samples is observed. The depolarization temperature (Td) and the Curie temperature (Tc) are determined from dielectric studies. Relaxor behavior of the samples is interpreted using modified Curie Weiss law. Control of polarization in sodium bismuth titanate (NBT) is achieved using strontium titanate (SrTiO3-ST) and studied through polarization vs. electric field (PE) loops and piezoelectric measurements. The intra-granual and inter-granual effects on the electrical properties of the ceramics are studied from impedance analysis.  相似文献   

14.
In this paper, a single crystal of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 with dimensions of Φ 30×10 mm was grown by the top-seeded-solution growth method. X-ray powder diffraction results show that the as-grown crystal possesses the rhombohedral perovskite-type structure. The dielectric, piezoelectric and electrical conductivity properties were systematically investigated with 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples. The room-temperature dielectric constants for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples are found to be 650, 740 and 400 at 1 kHz. The (T m, ε m) values of the dielectric temperature spectra are almost independent of the crystal orientations; they are (306°C, 3718), (305°C, 3613) and (307°C, 3600) at 1 kHz for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal. The optimum poling conditions were obtained by investigating the piezoelectric constants d 33 as a function of poling temperature and poling electric field. For the 〈001〉 and 〈110〉 crystal samples, the maximum d 33 values of 146 and 117 pC/N are obtained when a poling electric field of 3.5 kV/mm and a poling temperature of 80°C were applied during the poling process. The as-grown 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 crystal possesses a relatively large dc electrical conductivity, especially at higher temperature, having a value of 1.98×10−11 Ω−1⋅m−1 and 3.95×10−9 Ω−1⋅m−1 at 25°C and 150°C for the 〈001〉 oriented crystal sample.  相似文献   

15.
田晓霞  屈绍波  杜红亮  李晔  徐卓 《中国物理 B》2012,21(3):37701-037701
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tanδ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.040.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 ℃, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.  相似文献   

16.
The high‐pressure Raman studies of pure, Yb‐modified, protonated and non‐protonated SrZrO3 dense ceramics were performed between 0.1 and 40 GPa using a diamond anvil cell. Lanthanide‐modified, protonated SrZrO3 perovskites are potential materials for electrolytic membrane in fuel cells and electrolysers working at medium temperature. The comparison of the Raman spectra shows important differences in the pressure behaviour between the pure and Yb‐modified SrZrO3 ceramics. SrZrO3 exhibits a rigid structure without any structural modification, whereas for both SrZr0.93 Yb0.07 O2.965 and SrZr0.93 Yb0.07 O2.962 H0.003 a sequence of structural modifications at 10, 20 and 35 GPa is revealed. The character of these structural modifications is very similar to that observed as a function of the temperature (orthorhombic Pnma 750 °C → pseudo‐tetragonal Imma 840 °C → tetragonal I4/mcm 1070 °C → cubic Pm3m), which suggests that they can be considered as the phase transitions. Despite the low level of proton content (0.3% mole/mole), significant difference between protonated and non‐protonated compounds is observed for the 700–750 cm−1 doublet assigned to the Zr O octahedron stretching mode, perturbed by an oxygen atom vacancy and/or neighbouring Yb ion. The location of proton is discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A new Li2O–Nb2O5–TiO2 (LNT) ceramic with the Li2O:Nb2O5:TiO2 mole ratio of 5.5:1:7 was prepared by solid state reaction route. The phase and structure of the ceramic were characterized by X-ray diffraction and scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The microwave dielectric ceramic has low sintering temperature (∼1075°C) and good microwave dielectric properties of ε r=42, Q×f=16900 GHz (5.75 GHz), and τ f =63.7 ppm/°C. The addition of B2O3 can effectively lower the sintering temperature from 1075 to 875°C and does not induce degradation of the microwave dielectric properties. Obviously, the LNT ceramics can be applied to microwave low temperature-cofired ceramics (LTCC) devices.  相似文献   

18.
Crystallographic structure, phase transition and electrical properties of lead-free (Na0.535K0.485)1−x Li x (Nb0.942Ta0.058)O3 (x=0.042–0.098) (NKL x NT) piezoelectric ceramics were investigated. The experimental results show that both Li content and sintering temperature strongly affect the orthorhombic–tetragonal polymorphic phase boundary (PPB), which results in remarkable differences of the piezoelectric property and its temperature stability in the NKL x NT ceramics. Chemical analysis indicates that sodium volatilizes more seriously than potassium and lithium with increasing sintering temperature. Due to the comprehensively optimized effects of Li content and sintering temperature, an enhanced piezoelectric constant d 33 (276 pC/N) was obtained at room temperature in the ceramics with x=0.074 sintered at 1000°C. In the same composition, a further high d 33 up to 354 pC/N was obtained at 43°C, which is close to its T o−t temperature. Furthermore, better temperature stability can be obtained when x=0.082 sintered at 1000°C, whose piezoelectric constant d 33 (236 pC/N) keeps almost constant from room temperature to 100°C. Such a temperature-independent piezoelectric property is available in the NKL x NT ceramics with high Li content because its T o−t was moved below room temperature.  相似文献   

19.
BiFeO3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopts a higher heating/cooling rate during the sintering process than usually used. It was found that the calcination temperature T cal (from 400 to 750°C) does not influence the BFO phase formation, while the sintering temperature T sin (from 815 to 845°C) dominates the phase purity. The optimum sintering temperature was in the range from 825 to 835°C. The optimized samples exhibit saturated ferroelectric hysteresis loops with a remnant polarization of 13.2 μC/cm2. The measured piezoelectric coefficient d 33 was 45 pC/N. No remnant magnetization was observed in all of the samples. The pyroelectric properties were studied as a function of temperature and frequency. A pyroelectric coefficient as high as 90 μC/m2 K was obtained at room temperature in the optimized sample. An abrupt decrease of the pyroelectric coefficient was observed at temperatures between 70 and 80°C. On the basis of our results, BFO may have the potential for pyroelectric applications.  相似文献   

20.
Nanocrystalline CaCu3Ti4O12 powders were synthesized by a simple PVA sol–gel route and calcined at 700 and 800°C in air for 8 h. The diameter of the powders ranges from 40–100 nm. The calcined CaCu3Ti4O12 powders were characterized by TG-DTA, XRD, FTIR, SEM, and TEM. Sintering of the powders was conducted in air at 1100°C for 16 h. The XRD results indicated that all sintered samples had a typical perovskite CaCu3Ti4O12 structure although the sintered samples contained some amount of CaTiO3. SEM of the sintered CaCu3Ti4O12 ceramics showed the average grain sizes of 13–15 μm. The samples exhibit a giant dielectric constant, ε′∼105 at 150 to 200°C with weak temperature dependence below 1 kHz in the sample sintered using the powders calcined at 700°C. The Maxwell–Wagner polarization mechanism is used to explain the high permittivity in these ceramics. It is also found that all sintered samples have the same activation energy of grains, which is ∼0.122 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号