首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compounds Ba4Ag2Si6, Eu4Ag2Si6, and Ca4Ag2Si6, prepared from the elements at 1273 K (the components in inner corundum crucibles are enclosed in sealed quartz ampoules), are brittle semiconductors with silvery luster. They react slowly with acids liberating hydrogen. Ba4Ag2[Si6] and Eu4Ag2[Si6] crystallize like Ba4Li2[Si6] (space group Fddd (No. 70); a = 8.613 Å, b = 14.927 Å, c = 19.639 Å, and a = 8.420 Å, b = 14.585 Å, c = 17.864 Å, respectively), whereas Ca4Ag2[Si6] represents a new structure type (space group Fmmm (No. 69); a = 8.315 Å, b = 14.391 Å, c = 8.646 Å). The three compounds are Zintl phases with the formal charges M2+, Ag+ and [Si6]10–. The mean bond lengths d(Si–Si) = 2.335–2.381 Å in the 10π‐Hückel arene [Si6]10– as well as d(Ag–Si) = 2.464–2.595 Å vary with the size of the M2+ cations. The chemical bonding was analyzed in terms of the Electron Localization Function (ELF) and compared with the bonding in related systems (Ce4Co2Si6).  相似文献   

2.
Ba6Mg10.8Li1.2Si12, the First Compound Containing Three Different Zintl Anions A novel quaternary Zintl phase of silicon is presented. The crystal structure of Ba6Mg10.8Li1.2Si12 (Pnma, a = 22.257(5), b = 4.5804(9), c = 14.007(3) Å) is the first example of a silicide with isolated silicon atoms, Si2 dumb‐bells and Si3 chains thus with three different Zintl anions within one structure. Accompanying quantumchemical investigations in the Extended Hückel framework give detailed insights in the present bond situation and support general trends found in unusual Zintl phases.  相似文献   

3.
Structure and Properties of Ba2Mg3Si4, a Zintl Phase with Planar Si6 Units Within the scope of the investigations on the phase system Ba/Mg/Si a new ternary Zintl phase of the composition Ba2Mg3Si4 was found and structurally characterized. The silicon substructure is built up of Si2 pairs and a new type of Zintl anion, a planar Si6 chain. Temperature dependent measurements of the electric conductivity and the magnetic susceptibility show a metallic behavior. Accompanying quantumchemical investigations on the base of the LMTO-ASA method confirm these results and allow an insight in the present bond situation.  相似文献   

4.
The Zintl phase Eu2Si was synthesized from elemental europium and silicon in a sealed tantalum tube in a high‐frequency furnace at 1270 K and subsequent annealing at 970 K. Investigation of the sample by X‐ray powder and single crystal techniques revealed: Co2Si (anti‐PbCl2) type, space group Pnma, a = 783.0(1), b = 504.71(9), c = 937.8(1) pm, wR2 = 0.1193, 459 F2 values and 20 variables. The structure contains two europium and one silicon site. 151Eu Mössbauer spectroscopic data show a single signal at an isomer shift of −9.63(3) mm/s, compatible with divalent europium. Within the Zintl concept electron counting can be written as (2Eu2+)4+Si4−, in agreement with the absence of Si‐Si bonding. Each silicon atom has nine europium neighbors in the form of a tri‐capped trigonal prism. The silicon coordinations of the Zintl phases Eu2Si, Eu5Si3, EuSi, and EuSi2 are compared.  相似文献   

5.
The isostructural compounds Yb2MgSi2, La2.05Mg0.95Si2, and Ce2.05Mg0.95Si2, as well as Yb2Li0.5Ge2 and Yb1.75Mg0.75Si2, respectively, were synthesized from stoichiometric mixtures of the corresponding elements in sealed Nb‐ ampoules under argon atmosphere. The structures were determined by single crystal X‐ray diffraction: Yb2MgSi2 (P4/mbm (No. 127), a = 7.056(1), c = 4.130(1) Å3, Z = 2), La2.05Mg0.95Si2 (P4/mbm, a = 7.544(1), c = 4.464(1) Å3, Z = 2), and Ce2.05Mg0.95Si2 (P4/mbm, a = 7.425(1), c = 4.370(1) Å3, Z = 2), Yb2Li0.5Ge2 (Pnma (No. 62), a = 7.0601(6), b = 14.628(1), c = 7.6160(7) Å, V = 786.5Å3, Z = 4), Yb1.75Mg0.75Si2 (Pnma, a = 6.9796(1), b = 14.4009(1), c = 7.5357(1) Å, V = 757.43(2) Å3, Z = 4). All compounds contain exclusively Tt‐Tt dumb‐bells (Tt = Si, Ge). The Si‐Si Zintl anions exhibit only very small variations of bond lengths which seem to be more due to cation matrix effects than to effective bond orders.  相似文献   

6.
Can One Design Zintl Anions? Contributions from the System Sr/Mg/Si to the Topic Si2? Two novel ternary silicides, SrMgSi2 (Pnma, Z = 8, a = 14.374, b = 4.4512, c = 11.398 Å) and Sr11Mg2Si10, (C2/m, Z = 2, a = 19.744, b = 4.754, c = 14.84 Å, β = 112.47°) have been established in the ternary system Sr/Mg/Si. The compounds are synthezised from the elements under inert conditions. Single crystal structure determinations yield the novel Zintl anions, [Si(Si3)8?] a branched chain, and the zig-zag chain piece [Si8]18?, both of which exhibit significant correlations and differences with respect to the linear chains in [Si?] in the binary MSi phases (M = Ca, Sr, Ba) which have been reinvestigated in this context. The variations of the Zintl anions can be traced back mainly to the differences of Mg? Si and Sr? Si interactions. From these findings a functional relationship between Mg content and the formation of endgroup members in Zintl anions of silicon is anticipated.  相似文献   

7.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

8.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

9.
《化学:亚洲杂志》2017,12(8):910-919
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4N+)2[MIII(HFl−O)(Pc.3−)].−(Br) ⋅ 1.5 C6H4Cl2 [M=Al ( 1 ), Ga ( 2 ); HFl−O=fluoren‐9‐olato anion; Pc=phthalocyanine] and (Bu4N+) [InIIIBr(Pc.3−)].− ⋅ 0.875 C6H4Cl2 ⋅ 0.125 C6H14 ( 3 ). The salts were found to contain Pc.3− radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3− in the near‐IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl−O anions in 1 and 2 with short Al−O and Ga−O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C−O bonds [1.402(3) and 1.391(11) Å in 1 and 2 , respectively] in the HFl−O anions are longer than the same bond in the fluorenone ketyl (1.27–1.31 Å). Salts 1 – 3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S= 1/2 spins on Pc.3−. These spins are coupled antiferromagnetically with Weiss temperatures of −22, −14, and −30 K for 1 – 3 , respectively. Coupling can occur in the corrugated two‐dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J /k B=−0.9 and −1.1 K, respectively, and in the π‐stacking {[InIIIBr(Pc.3−)].−}2 dimers of 3 with an exchange interaction of J /k B=−10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3−. It was found that increasing the size of the central metal atom strongly broadened these EPR signals.  相似文献   

10.
The new barium nitridoosmate oxide (Ba6O)(OsN3)2 was prepared by reacting elemental barium and osmium (3:1) in nitrogen at 815–830 °C. The crystal structure of (Ba6O)(OsN3)2 as determined by laboratory powder X‐ray diffraction ( , No 148: a=b=8.112(1) Å, c=17.390(1) Å, V=991.0(1) Å3, Z=3), consists of sheets of trigonal OsN3 units and trigonal‐antiprismatic Ba6O groups, and is structurally related to the “313 nitrides” AE3MN3 (AE=Ca, Sr, Ba, M=V–Co, Ga). Density functional calculations, using a hybrid functional, likewise indicate the existence of oxygen in the Ba6 polyhedra. The oxidation state 4+ of osmium is confirmed, both by the calculations and by XPS measurements. The bonding properties of the OsN35? units are analyzed and compared to the Raman spectrum. The compound is paramagnetic from room temperature down to T=10 K. Between room temperature and 100 K it obeys the Curie–Weiss law (μ=1.68 μB). (Ba6O)(OsN3)2 is semiconducting with a good electronic conductivity at room temperature (8.74×10?2 Ω?1 cm?1). Below 142 K the temperature dependence of the conductivity resembles that of a variable‐range hopping mechanism.  相似文献   

11.
A diphosphine chelate ligand with a wide and flexible bite angle, a unique stereochemical environment, and redox‐active and ambiphilic character is reported. Initially generated as its HgCl2 complex by reaction of 1,2‐fc(PPh2)(SnMe3) (fc=ferrocenediyl) with HgCl2 in acetone, treatment with [n‐Bu4N]CN readily liberates the free chiral bidentate ligand. An intermolecular ClHg−Cl→Hgfc2 (2.9929(13) Å) interaction that is unprecedented in ambiphilic ligand chemistry is seen in the solid structure of Hg(fcPPh2)2⋅HgCl2 where the bridging mercury atom acts as a σ‐acceptor. Furthermore, a bis‐[Rh(COD)Cl] complex is introduced, which displays relatively short Rh⋅⋅⋅Hg contacts of 3.4765(5) and 3.4013(1) Å. Wiberg indices of 0.12 are determined for these Rh⋅⋅⋅Hg interactions and an AIM analysis reveals bond paths with an electron density ρ(r) of 1.2×10−2 and 1.4×10−2 e/a03 at the bond critical points.  相似文献   

12.
Two interpenetrating 2 [Si 20 30− ] polyanions with naphthalene-like Si1010− building blocks (see picture) characterize the“nonclassical” Zintl phase Sr13Mg2Si20, which is formed from the elements at 1230–1240 K. The ecliptical stacking of the Si1010− units leads to one-dimensional conductivity along the stacking direction.  相似文献   

13.
Herein we report the reactions of 3,4,5,6-tetrafluoroterephthalonitrile ( 1 ) with bis(silylene) and bis(germylene) LE−EL [E=Si ( 2 ) and Ge( 3 ): L=PhC(NtBu)2)]. The reaction of LSi−SiL (L=PhC(NtBu)2) ( 2 ) with two equivalents of 1 resulted in an unprecedented oxidative addition of a C−F bond of 1 leading to disilicon(III) fluoride {L(4-C8F3N)FSi−SiF(4-C8F3N)L}( 4 ), wherein the Si−Si single bond was retained. In contrast, the reaction of LGe−GeL (L=PhC(NtBu)2) ( 3 ) with one equivalent of 1 resulted in the oxidative cleavage of Ge−Ge bond leading to L(4-C8F3N2)Ge ( 5 ) and LGeF ( 6 ). All three compounds ( 4 – 6 ) were characterized by NMR spectroscopy, EI-MS spectrometry, and elemental analysis. X-ray single-crystal structure determination of compound 4 unequivocally established that the SiIII−SiIII bond remains uncleaved.  相似文献   

14.
A highly unusual solid-state epitaxy-induced phase transformation of Na4SnS4 ⋅ 14H2O ( I ) into Na4Sn2S6 ⋅ 5H2O ( II ) occurs at room temperature. Ab initio molecular dynamics (AIMD) simulations indicate an internal acid-base reaction to form [SnS3SH]3− which condensates to [Sn2S6]4−. The reaction involves a complex sequence of O−H bond cleavage, S2− protonation, Sn−S bond formation and diffusion of various species while preserving the crystal morphology. In situ Raman and IR spectroscopy evidence the formation of [Sn2S6]4−. DFT calculations allowed assignment of all bands appearing during the transformation. X-ray diffraction and in situ 1H NMR demonstrate a transformation within several days and yield a reaction turnover of ≈0.38 %/h. AIMD and experimental ionic conductivity data closely follow a Vogel-Fulcher-Tammann type T dependence with D(Na)=6×10−14 m2 s−1 at T=300 K with values increasing by three orders of magnitude from −20 to +25 °C.  相似文献   

15.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

16.
Studies of the K–Ba–Ga–Sn system produced the clathrate compounds K0.8(2)Ba15.2(2)Ga31.0(5)Sn105.0(5) [a = 17.0178 (4) Å], K4.3(3)Ba11.7(3)Ga27.4(4)Sn108.6(4) [a = 17.0709 (6) Å] and K12.9(2)Ba3.1(2)Ga19.5(4)Sn116.5(4) [a = 17.1946 (8) Å], with the type‐II structure (cubic, space group Fdm), and K7.7(1)Ba0.3(1)Ga8.3(4)Sn37.7(4) [a = 11.9447 (4) Å], with the type‐I structure (cubic, space group Pmn). For the type‐II structures, only the smaller (Ga,Sn)24 pentagonal dodecahedral cages are filled, while the (Ga,Sn)28 hexakaidecahedral cages remain empty. The unit‐cell volume is directly correlated with the K:Ba ratio, since an increasing amount of monovalent K occupying the cages causes a decreasing substitution of the smaller Ga in the framework. All three formulae have an electron count that is in good agreement with the Zintl–Klemm rules. For the type‐I compound, all framework sites are occupied by a mixture of Ga and Sn atoms, with Ga showing a preference for Wyckoff site 6c. The (Ga,Sn)20 pentagonal dodecahedral cages are occupied by statistically disordered K and Ba atoms, while the (Ga,Sn)24 tetrakaidecahedral cages encapsulate only K atoms. Large anisotropic displacement parameters for K in the latter cages suggest an off‐centering of the guest atoms.  相似文献   

17.
Stefan Mebs 《Chemphyschem》2023,24(6):e202200621
N2 can be stepwise converted in silico into one molecule NH3 and a secondary amide with a bond activator molecule consisting only of light main group elements. The proposed N2-activating pincer-related compound carries a silyl ion (Si(+)) center as well as three Lewis acidic (−BF2) and three Lewis basic (−PMe2) sites, providing an efficient binding pocket for gaseous N2 within the framework of intramolecular frustrated Lewis pairs (FLP). In addition, it exhibits supportive secondary P−B and F⋅⋅⋅B contacts, which stabilize the structure. In the PSi(+)−N−N−BP environment the N≡N triple bond is extended from 1.09 Å to remarkable 1.43 Å, resembling a N−N single bond. The strongly activated N−N-fragment is prone to subsequent hydride addition and protonation steps, resulting in the energy efficient transfer of two hydrogen equivalents. The next hydride added causes the release of one molecule NH3, but leaves the ligand system as poisoned R3Si(+)−NH2−PMe2 or R3Si(+)−NH3 dead-end states behind. The study indicates that approximately tetrahedral constrained SiBP2-pockets are capable to activate N2, whereas the acid-rich SiB3- and SiB2P-pocktes, as well as the base-rich SiP3-pockets fail, hinting towards the high relevance of the acid-base proportion and relative orientation. The electronic structure of the N2-activated state is compared to the corresponding state of a recently published peri-substituted bond activator molecule featuring a PSi(+)−N−N−Si(+)P site (S. Mebs, J. Beckmann, Physical Chemistry Chemical Physics 2022 , 24, 20953–20967).  相似文献   

18.
《Solid State Sciences》2001,3(6):677-687
Partial substitution of P by As, leading to the solid solution CsH2(PO4)1−x(AsO4)x, with x=0.28 (abbreviated as CDAP) has been shown. The structural characteristics of the crystals were analyzed by means of X-ray diffraction, which revealed that the new title compound is nearly isomorphous with the monoclinic phase of CsH2PO4 (CDP). The structure was solved from 796 independent reflections with R1=0.0292 and Rw2=0.0702, refined with 59 parameters. The following results have been obtained: space group P21, a=4.9250(4) Å, b=6.4370(3) Å, c=7.9280(6) Å, β=107.316(3)°, V=239.94(3) Å3, Z=2 and ρcal=3.349 g cm−3. The hydrogen bonds are clearly distinguished in the electron density maps which display distributions corresponding to order of protons. The shorter bond (2.452(4) Å), links the phosphate–arsenate groups into chains running along the b-axis and the longer bond (2.531(3) Å), crosslinks the chains to form (001) layers. The Raman and infrared spectra of CDAP recorded at room temperature in the frequency ranges 15–1200 cm−1 and 400–4000 cm−1, respectively, confirm the presence of PO3−4 and AsO3−4 groups in the crystal. Differential scanning calorimetry traces show three phase transitions at 333, 449 and 490 K in this material, which are characterized by X-ray powder diffraction at high temperature.  相似文献   

19.
YbSi2 and the derivatives YbTxSi2–x (T = Cr, Fe, Co) crystallizing in the α‐ThSi2 structure type were obtained as single crystals from reactions run in liquid indium. All silicides were investigated by single‐crystal X‐ray diffraction, I41/amd space group and the lattice constants are: a = 3.9868(6) Å and c = 13.541(3) Å for YbSi2, a = 4.0123(6) Å and c = 13.542(3) Å for YbCr0.27Si1.73, a = 4.0142(6) Å and c = 13.830(3) Å for YbCr0.71Si1.29, a = 4.0080(6) Å and c = 13.751(3) Å for YbFe0.34Si1.66, and a = 4.0036(6) Å, c = 13.707(3) Å for YbCo0.21Si1.79. YbSi2 and YbTxSi2–x compounds are polar intermetallics with three‐dimensional Si and M (T+Si) polyanion sub‐networks, respectively, filled with ytterbium atoms. The degree of substitution of transition metal at the silicon site is signficant and leads to changes in the average bond lengths and bond angles substantially.  相似文献   

20.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号