共查询到20条相似文献,搜索用时 0 毫秒
1.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015 相似文献
2.
Yang Liu Hong Li Jinfeng Wang Siriguleng He 《Numerical Methods for Partial Differential Equations》2012,28(2):670-688
Splitting positive definite mixed finite element (SPDMFE) methods are discussed for a class of second‐order pseudo‐hyperbolic equations. Depending on the physical quantities of interest, two methods are proposed. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete schemes are proved. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 670–688, 2012 相似文献
3.
Duan Huo‐Yuan Liang Guo‐Ping 《Numerical Methods for Partial Differential Equations》2004,20(4):609-623
We consider a finite element discretization of the primal first‐order least‐squares mixed formulation of the second‐order elliptic problem. The unknown variables are displacement and flux, which are approximated by equal‐order elements of the usual continuous element and the normal continuous element, respectively. We show that the error bounds for all variables are optimal. In addition, a field‐based least‐squares finite element method is proposed for the 3D‐magnetostatic problem, where both magnetic field and magnetic flux are taken as two independent variables which are approximated by the tangential continuous and the normal continuous elements, respectively. Coerciveness and optimal error bounds are obtained. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004. 相似文献
4.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
5.
Haitao Che Zhaojie Zhou Ziwen Jiang Yiju Wang 《Numerical Methods for Partial Differential Equations》2013,29(3):799-817
H1‐Galerkin mixed finite element method combined with expanded mixed element method is discussed for nonlinear pseudo‐parabolic integro‐differential equations. We conduct theoretical analysis to study the existence and uniqueness of numerical solutions to the discrete scheme. A priori error estimates are derived for the unknown function, gradient function, and flux. Numerical example is presented to illustrate the effectiveness of the proposed scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
6.
Sang Dong Kim Hyung‐Chun Lee Byeong Chun Shin 《Numerical Methods for Partial Differential Equations》2004,20(1):128-139
First‐order system least‐squares spectral collocation methods are presented for the Stokes equations by adopting the first‐order system and modifying the least‐squares functionals in 2 . Then homogeneous Legendre and Chebyshev (continuous and discrete) functionals are shown to be elliptic and continuous with respect to appropriate product weighted norms. The spectral convergence is analyzed for the proposed methods with some numerical experiments. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 128–139, 2004 相似文献
7.
Tianliang Hou 《Applicable analysis》2013,92(8):1655-1665
In this article, we analyse a posteriori error estimates of mixed finite element discretizations for linear parabolic equations. The space discretization is done using the order λ?≥?1 Raviart–Thomas mixed finite elements, whereas the time discretization is based on discontinuous Galerkin (DG) methods (r?≥?1). Using the duality argument, we derive a posteriori l ∞(L 2) error estimates for the scalar function, assuming that only the underlying mesh is static. 相似文献
8.
《Mathematical Methods in the Applied Sciences》2018,41(9):3370-3391
In this paper, the full discrete scheme of mixed finite element approximation is introduced for semilinear hyperbolic equations. To solve the nonlinear problem efficiently, two two‐grid algorithms are developed and analyzed. In this approach, the nonlinear system is solved on a coarse mesh with width H, and the linear system is solved on a fine mesh with width h≪H. Error estimates and convergence results of two‐grid method are derived in detail. It is shown that if we choose in the first algorithm and in the second algorithm, the two‐grid algorithms can achieve the same accuracy of the mixed finite element solutions. Finally, the numerical examples also show that the two‐grid method is much more efficient than solving the nonlinear mixed finite element system directly. 相似文献
9.
Ailing Zhu Tingting Xu Qiang Xu 《Numerical Methods for Partial Differential Equations》2016,32(5):1357-1377
The semidiscrete and fully discrete weak Galerkin finite element schemes for the linear parabolic integro‐differential equations are proposed. Optimal order error estimates are established for the corresponding numerical approximations in both and norms. Numerical experiments illustrating the error behaviors are provided.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1357–1377, 2016 相似文献
10.
An a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 214–236, 2000 相似文献
11.
Shaohong Du 《Numerical Methods for Partial Differential Equations》2014,30(2):593-624
We propose and analyze a new technique for developing residual‐based a posteriori error estimates over the stress and scalar displacement error for the lowest‐order Raviart–Thomas mixed finite element discretizations of convection‐diffusion‐reaction equations in two‐dimension space. The new technique is based on the abstract error estimates, the postprocessed approximation of the scalar displacement, and on the construction of an auxiliary problem. We consider the centered and upwind‐weighted mixed schemes, and concentrate the attention on the presence of an inhomogeneous and an anisotropic diffusion‐dispersion tensor and on a possible convection dominance. Global upper bounds can be directly computed on the base of the solution of the mixed schemes without any additional cost. Local lower bounds without any saturation assumption, hold from the case where convection or reaction are not present to convection‐ or reaction‐dominated equations, and their local efficiency depends on local or global variations in coefficients similar to Péclect number. Numerical experiments are reported to show the competitive behavior of the proposed posteriori error estimates, and to confirm the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 593–624, 2014 相似文献
12.
Zhenzhen Li Dongyang Shi Minghao Li 《Mathematical Methods in the Applied Sciences》2019,42(2):605-619
In this paper, the stabilized mixed finite element methods are presented for the Navier‐Stokes equations with damping. The existence and uniqueness of the weak solutions are proven by use of the Brouwer fixed‐point theorem. Then, optimal error estimates for the H1‐norm and L2‐norm of the velocity and the L2‐norm of the pressure are derived. Moreover, on the basis of the optimal L2‐norm error estimate of the velocity, a stabilized two‐step method is proposed, which is more efficient than the usual stabilized methods. Finally, two numerical examples are implemented to confirm the theoretical analysis. 相似文献
13.
Yali Gao 《Applicable analysis》2018,97(13):2288-2312
In this paper, Galerkin finite methods for two-dimensional regularized long wave and symmetric regularized long wave equation are studied. The discretization in space is by Galerkin finite element method and in time is based on linearized backward Euler formula and extrapolated Crank–Nicolson scheme. Existence and uniqueness of the numerical solutions have been shown by Brouwer fixed point theorem. The error estimates of linearlized Crank–Nicolson method for RLW and SRLW equations are also presented. Numerical experiments, including the error norms and conservation variables, verify the efficiency and accuracy of the proposed numerical schemes. 相似文献
14.
In this article, we introduce two least‐squares finite element procedures for parabolic integro‐differential equations arising in the modeling of non‐Fickian flow in porous media. By selecting the least‐squares functional properly the presented procedure can be split into two independent subprocedures, one subprocedure is for the primitive unknown and the other is for the flux. The optimal order convergence analysis is established. Numerical examples are given to show the efficiency of the introduced schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
15.
Least‐squares spectral method for velocity‐vorticity‐pressure form of the Stokes equations 下载免费PDF全文
Byeong‐Chun Shin Peyman Hessari 《Numerical Methods for Partial Differential Equations》2016,32(2):661-680
The aim of this article is to present and analyze first‐order system least‐squares spectral method for the Stokes equations in two‐dimensional spaces. The Stokes equations are transformed into a first‐order system of equations by introducing vorticity as a new variable. The least‐squares functional is then defined by summing up the ‐ and ‐norms of the residual equations. The ‐norm in the least‐squares functional is replaced by suitable operator. Continuous and discrete homogeneous least‐squares functionals are shown to be equivalent to ‐norm of velocity and ‐norm of vorticity and pressure for spectral Galerkin and pseudospectral method. The spectral convergence of the proposed methods are given and the theory is validated by numerical experiment. Mass conservation is also briefly investigated. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 661–680, 2016 相似文献
16.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007 相似文献
17.
This article applies the first‐order system least‐squares (fosls) finite element method developed by Cai, Manteuffel and McCormick to the compressible Stokes equations. By introducing a new dependent velocity flux variable, we recast the compressible Stokes equations as a first‐order system. Then it is shown that the ellipticity and continuity hold for the least‐squares functionals employing the mixture of H?1 and L2, so that the fosls finite element methods yield best approximations for the velocity flux and velocity. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:689–699, 2001 相似文献
18.
Feng Wang Huanzhen Chen Hong Wang 《Mathematical Methods in the Applied Sciences》2019,42(12):4331-4342
We propose a least‐squares mixed variational formulation for variable‐coefficient fractional differential equations (FDEs) subject to general Dirichlet‐Neumann boundary condition by splitting the FDE as a system of variable‐coefficient integer‐order equation and constant‐coefficient FDE. The main contributions of this article are to establish a new regularity theory of the solution expressed in terms of the smoothness of the right‐hand side only and to develop a decoupled and optimally convergent finite element procedure for the unknown and intermediate variables. Numerical analysis and experiments are conducted to verify these findings. 相似文献
19.
Alan Demlow. 《Mathematics of Computation》2004,73(248):1623-1653
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.
20.
Suh‐Yuh Yang 《Numerical Methods for Partial Differential Equations》2002,18(6):738-751
In this article we apply the subdomain‐Galerkin/least squares method, which is first proposed by Chang and Gunzburger for first‐order elliptic systems without reaction terms in the plane, to solve second‐order non‐selfadjoint elliptic problems in two‐ and three‐dimensional bounded domains with triangular or tetrahedral regular triangulations. This method can be viewed as a combination of a direct cell vertex finite volume discretization step and an algebraic least‐squares minimization step in which the pressure is approximated by piecewise linear elements and the flux by the lowest order Raviart‐Thomas space. This combined approach has the advantages of both finite volume and least‐squares methods. Among other things, the combined method is not subject to the Ladyzhenskaya‐Babus?ka‐Brezzi condition, and the resulting linear system is symmetric and positive definite. An optimal error estimate in the H1(Ω) × H(div; Ω) norm is derived. An equivalent residual‐type a posteriori error estimator is also given. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 738–751, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10030. 相似文献